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6

Abstract7

The spectral centroid is one of the useful low level features of a signal that was proposed for8

speech-music classification, speech recognition and musical instrument classification, and was9

also considered one of the lowlevel features to describe the audio content in MPEG-7 Content10

Description and Interface Standard. When the spectral centroid is computed from practical11

data, the estimate is different from the true expected theoretical value. Moreover, the12

behavior of the estimation error, when computed from finite length data i.e. from a short13

segment of signal would of high interest because most of the classification algorithms use14

dynamic features as the signals are nonstationary. In this paper, windowing effects on the15

spectral centroid estimation are investigated considering some well structured signals that16

appear frequently in speech and audio content. A novel algorithm is proposed to counter the17

window effects and better estimation of spectral centroid.18

19

Index terms— spectral centroid, MPEG-7, sum of sine waves, band limited impulse train, STFT, peak20
detection.21

1 Introduction22

he spectral centroid (SC) is one of the low level spectral domain features of a signal useful in signal classification23
or identification applications. The spectral centroid has been proposed by researchers in several applications24
like estimating the timbral brightness of music [1], for discriminating between the speech and the music [2,3,4],25
Speaker Recognition [5], Noisy Speech Recognition [6,7], Identification of Musical Instruments [8]. The spectral26
centroid was also incorporated as one of the Audio Low level features for audio content in MPEG-7 multimedia27
standard [9]. In [10], an AR(2) model based dynamic estimation of spectral centroid of a Narrowband Acoustic28
Doppler Volume Backscattering Signal was proposed.29

The spectral centroid represents the ”center of gravity” of the magnitude or power spectrum of a signal.30
Perceptually, the spectral centroid is a measure of the brightness of a sound. The unit of such a centroid would31
be the unit of frequency, Hz. Intuitively, the spectral centroid of a single tone signal is the frequency of the tone32
itself. Similarly, the spectral centroid of a signal having two equal amplitude real sinusoids is the mean frequency33
of two sinusoids.34

Mostly, the natural or real signals (e.g. speech, voice, audio, etc) are nonstationary in nature. Classification of35
such signals requires extraction of dynamic features that change with time. When spectral centroid is considered36
a promising feature, it is estimated dynamically from short segments of signal (one value of each segment), and37
the spectral centroid vector thus obtained for the entire signal becomes a feature vector for the classification38
system. The estimation of the spectral centroid from a short segment of signal data is a challenging task due to39
the windowing effects. In the literature, to the best of the knowledge of the author, .no systematic study results40
were reported on the finite data effects on the estimation of spectral centroid.41

In this paper, a systematic study is carried out on the estimation of spectral centroid from finite data of different42
lengths. The windowing effects on the estimation error are investigated considering certain deterministic signals43
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6 SIMULATIONS

that appear frequently in speech and audio content. A novel algorithm is proposed to counter the finite window44
effects and for better estimation of spectral centroid. Well structured signals are used to make the bench marking45
easy, nevertheless the algorithm can be applied on any kind of real signals.46

The remainder of the paper is organized as follows. The mathematical basics of spectral centroid are introduced47
in the section II. Short time fourier transform (STFT) for estimating the magnitude spectrum of the signal48
dynamically is presented in section III. The proposed algorithm along with the flowchart is discussed in section49
IV. Section V discusses the details of simulations and the test signals used in the simulations. Section VI presents50
the results and discussions on the findings. Finally conclusions on the research work are drawn in Section VII.51

2 II.52

3 Spectral Centroid53

Mathematically, the spectral centroid of a continuous time signal y(t) is given by???? = ? ð�??”ð�??”54
??(ð�??”ð�??”)??ð�??”ð�??” ? 0 ? ??(ð�??”ð�??”)??ð�??”ð�??” ? 0(1)55

where ??(ð�??”ð�??”) is the one-sided magnitude spectrum of the signal y(t).56
The counter part of the discrete time signal y(n) is given by???? = ? ?? ? |??(??)| ???1 ??=0 ? |??(??)| ???157

??=0(2)58
where ??(??) is the one-sided power spectrum of the signal y(n).59
For example, the magnitude spectrum of a tone signal of unit amplitude and frequency F is an impulse at F60

Hz on the frequency axis. The spectral centroid of this signal is F Hz Itself. Similarly, the magnitude spectrum61
of a signal consisting of two tones of equal amplitude and frequencies F 1 and F 2 contains two equal amplitude62
impulses at F 1 Hz and F 2 Hz on the frequency axis. The spectral centroid of this signal is the mid frequency63
of F 1 and F 2 i.e. (F 1 + F 2 )/2 Hz. If the amplitudes of two tones are not equal, then the spectral centroid is64
biased towards the higher amplitude tone. Figure 1 In each case, the sum of amplitudes is selected to be unity.65
This is to make the amplitude spectrum resemble a probability function. The figure 166

4 Short Time Fourier Transform67

When fourier transform is applied on short segments of data to dynamically analyze the signal, it is called short68
time fourier transform (STFT). To carry out the the short term analysis of a signal, the given signal ??(??, ??)69
= 1 ???? ?? ?? ?? ?? (?? + ????) ??(??)?? ??? 2?? ???? ?? ???1 ??=0 ? 2 0 ? ?? ? ?? ? 1, 0 ? ?? ? ?? ? 1 (3)70

where k is the discrete frequency index, l is the time frame index, M is the hop size, K is the total number71
of bins of ones-sided STFT and L is the total number of frames. The spectral centroid is computed from the72
magnitude spectrum of each frame of signal, thus yielding a SC vector of length L., and is given by????(??) = ?73
?? ? ??(??, ??) ???1 ??=0 ? ??(??, ??) ???1 ??=0 0 ? ?? ? ?? ? 1 IV.74

5 Proposed Algorithm for Spectral Centroid Estimation75

The input signal data is segmented into overlapped frames of frame size (W) with 50% overlap i.e. with a hop76
size of W/2. For each frame, Short Time Fourier Transform (STFT) is computed using FFT algorithm with Nfft77
points between [0,Fs/2]. The onesided magnitude spectrum is computed from the FFT output.78

The algorithm for computing the Spectral Centroid is given in figure ??. When the steps in the dashed boxes79
A, B and C are eliminated, then the algorithm computes the spectral centroid using the equation ( 4) directly80
and it called the direct method here.81

In the proposed method, a threshold STH is applied on the magnitude spectrum of each frame (operation:82
A) and a peak detection algorithm is applied on the spectral coefficients above the threshold (operation: B).83
Once the peaks are detected, magnitude spectrum is modified keeping only the peak values and making all other84
coefficients zero. The spectral centroid is then computed using this modified magnitude spectrum (operation:85
C). In this way the junk spectral coefficients (artifacts) which are produced due to finite data are get rid of from86
the computation process resulting in more accurate estimation of spectral centroid.87

V.88

6 Simulations89

The DFT spectrum is computed with 4096 points; thus for a sampling frequency of 44100Hz, the spectrum is90
computed with a resolution of /4096=10.76Hz and the frequency grid is (0,91

The algorithm is tested on the three categories of simulated test signals:? Tones ? Sum of Tones ? Band92
Limited Unit Impulse Trains a) Test Data Set:1 (Tones)93

In the first category, a set of 41 sine wave signals of frequencies: 96.9Hz, 635.23Hz, 1173.56Hz, ? , 21091.77Hz,94
21630.10Hz with a uniform spacing of 538.33Hz and random amplitudes in the range [0,1] are generated. These95
spot frequencies are selected so as to coincide with the DFT grid points on the frequency line (0 -Fs/2) i.e. 0Hz96
-22050Hz, where Fs=44100Hz.97
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7 b) Test Data Set:2 (Sum of Tones)98

In the second category, a sum of 5 or 10 or 50 sine waves of distinct frequencies are generated. In each case, the99
sine waves are separated with a uniform spacing of 10.76 Hz or 96.90Hz or 495.26Hz. These spacing are selected100
so as the generated frequencies coincide with the DFT grid points. In each set of 5 or 10 or 50 frequencies. the101
first frequency is taken from one of the 41 spot frequencies of the first category, the total number of composite102
signals generated under this category is 41 x 3 x 3 =369.103

8 c) Test Data Set:3 (Band Limited Unit Impulse Trains)104

In the third category, a set of Band Limited Unit Impulse Trains (BLUITs) each with a different fundamental105
frequency is generated. The frequencies of 41 sine waves of first category are used as fundamentals, thus we get106
41 sets of BLUITs. The spectral envelope of each BLUIT can be constant (i.e. 0dB/Octave) or decay at a rate107
of 12dB/Octave. The Fundamental frequencies and number of harmonics in each BLUIT (=0.5 F s /F 0 ) are108
given in the table 2109

9 Results110

In this section, the results obtained by applying both the direct and proposed methods are presented. The111
performance comparison of both the methods is also given. The SC estimation results of Test Set-1 (Tones)112
signals of frequency spanning from 96.8994 Hz to 21630.1025Hz of 0.5 sec duration (hamming window size is 512,113
Fs=44100Hz) for both direct and proposed methods are given in Table ??2. Each row in the table 2 corresponds to114
the estimated SC vector of a particular tone frequency of duration 0.5 seconds of full length signal corresponding115
to a total of 22050 samples. Both the mean (µ) and standard deviation (?) of this estimated spectral centroid116
vector is computed and given in the 3 rd column of the table 2.117

The estimated errors for direct method are large at both the lowest and the highest frequencies in the range.118
For the lowest (start) frequency the error is negative and for the highest (end) frequency it is positive. It means119
the direct method over estimates the SC at lower frequencies and under estimates at the higher frequencies. This120
is because of the fact that for lower frequencies, the spectral mass distribution on either side of the tone frequency121
is unevenly distributed and is more on the right (higher frequency) side.Hence, the estimated values shift towards122
the higher side of the frequency axis.123

Similarly, for higher frequencies, the estimated values shift towards the lower side of the frequency axis. As the124
frequency of the tone is spanned from the lowest frequency (96.8994Hz) to the highest frequency 21630.1025Hz),125
the mean error (µ) reduces and becomes zero at the middle of the range i. 2). For each tone, the standard126
deviation (?) is also computed. The estimation results of the proposed method for the same set of signals are127
given in the 5 th and the 6 th columns of table 2. This method exactly estimates the SC and hence both the128
mean (µ) and standard deviation (?) are zeros. The spectral threshold STH is chosen as the 0.02 fraction of the129
maximum value of the magnitude spectrum, which corresponds to about -14 dB down the peak value. This is130
approximately the side lobe level (SLL) of the spectrum of rectangular window. For other windows the SLL is131
always less than -13dB, though the main lobe width is more compared to that of a rectangular window, which132
anyway does not affect the peak detection process.133

The estimation results of table 2 are also shown in figure 3(a) for both direct (solid line) and proposed (dashed134
line) methods are shown. For direct method, the RMS range of the estimated Centroid is marked as red vertical135
lines at each point. For the proposed method the estimated value is exactly equal to true value, hence the RMS136
range is zero. Thus no red vertical lines are seen on the dashed line. The figure (b) shows the similar results for137
window size is 256. The estimation error follows a regular pattern for window size of 512 sample compared to138
the error for 256 sample window. This is due to the fact that the data has become too short to get a meaningful139
estimate. However, the error is almost symmetric around the middle frequency i.e. Fs/4. This symmetry would140
be disturbed if the window size is further reduced. The error becomes more for lower frequencies, as more number141
of cycles of the signal are not included in the short segment. So the window size is to be carefully selected based142
on the lowest frequency under consideration so that considerable number of signal cycles are included in the143
window. The figure ?? The results say that the estimation using the proposed is always better than that of the144
direct method. The accuracy is extremely well for larger spacing of tone frequencies, the reason being the better145
separation of. spectral peaks.146

10 Conclusions147

In this paper, windowing effects on the spectral centroid estimation are investigated considering three types of148
well structured signals: Tones, Sum of Tones and Band Limited Unit Impulse Trains. These test signals are149
considered because they appear frequently in speech and audio content. The spectral centroid is estimated using150
two methods: (1). the direct method using the equation 4. (2). The proposed method that uses threshold and151
peak detection on the magnitude spectrum. The proposed algorithm is shown to estimate the spectral centroid152
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10 CONCLUSIONS

Figure 1:

more accurately compared to direct method for all the signals under consideration and for all window lengths.153
1 2154

1© 20 15 Global Journals Inc. (US)
2© 2015 Global Journals Inc. (US)

4



1

Figure 2: Fig. 1 :
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Figure 3:
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Figure 4: Fig. 3 :

6



45

Figure 5: Fig. 4 :Fig. 5 :
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Figure 6: Fig. 6 :Fig. 7 :Fig. 8 :
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Figure 7: Fig. 9 :
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Figure 8: Figure 9 :Fig. 10 :
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Figure 9:

Figure 10:

Figure 11:
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10 CONCLUSIONS

Thus the total data set comprises
450 (=41 + 369 + 40) differently structured test signals.

VI.

Figure 12:

1

Figure 13: Table 1 :
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2

Investigation of Window Effects and the Accurate Estimation of Spectral Centroid
Tone True Spectral Spectral Centroid SC Est.

Error
Spectral Centroid SC

Est.
Er-
ror

Year
2015

no Centroid (Hz) (Estimated by Direct
Method)(Hz)

(Direct
Method)
(Hz)

(Estimated by Pro-
posed Method)

(Proposed
Method)
(Hz)

35

1 2
3 4
5 6
7 8
9
10
11
12
13
14

(1) 96.8994
635.2295
1173.5596
1711.8896
2250.2197
788.5498
3326.8799
3865.21 4403.54
4941.8701
5480.2002
6018.5303
6556.8604
7095.1904

(2) 634.033 ± 103.2825
1107.9746 ± 114.8693
1608.3049 ± 107.8578
2117.5429 ± 99.1608
2623.4037 ± 94.3929
3131.4122 ± 89.3034
3642.626 ± 86.5037
4158.9111 ± 81.3724
4669.3952 ± 79.7196
5183.2597 ± 76.1674
5698.366 ± 75.0958
6217.31 ± 71.2696
6730.1438 ± 70.2138
7247.1104 ± 67.5403

(1) -(2)
-537.13
-472.75
-434.75
-405.65
-373.18
-342.86
-315.75
-293.7
-265.86
-241.39
-218.17
-198.78
-173.28
-151.92

(Hz) (3) 96.8994
± 0 635.2295
± 0 1173.5596
± 0 1711.8896
± 0 2250.2197
± 0 2788.5498
± 0 3326.8799
± 0 3865.21 ±
0 4403.54 ± 0
4941.8701 ± 0
5480.2002 ± 0
6018.5303 ± 0
6556.8604 ± 0
7095.1904 ± 0

(1)
-
(3)
0 0
0 0
0 0
0 0
0 0
0 0
0 0

( )
Vol-
ume
XV
Is-
sue
IV
Ver-
sion
I
J

15
16
17
18
19
20
21
22
23
24
25

7633.5205
8171.8506
8710.1807
9248.5107
9786.8408
10325.1709
10863.501
11401.8311
11940.1611
12478.4912
13016.8213

7764.439 ± 66.7206
8283.9504 ± 64.5743
8797.6702 ± 64.3643
9316.0265 ± 63.4916
9834.3672 ± 63.363
10353.7776 ± 62.7943
10867.8735 ± 62.924
11387.1281 ± 63.1554
11905.6919 ± 63.1063
12424.4625 ± 63.3744
12938.3795 ± 63.3481

-130.92
-112.1
-87.49
-67.52
-47.53
-28.61
-4.37 14.7
34.47
54.03
78.44

7633.5205 ± 0
8171.8506 ± 0
8710.1807 ± 0
9248.5107 ± 0
9786.8408 ± 0
10325.1709 ± 0
10863.501 ± 0
11401.8311 ± 0
11940.1611 ± 0
12478.4912 ± 0
13016.8213 ± 0

0 0
0 0
0 0
0 0
0 0
0

of
Re-
searches
in
En-
gi-
neer-
ing

26
27
28
29
30
31

13555.1514
14093.4814
14631.8115
15170.1416
15708.4717
16246.8018

13457.8904 ± 64.7948
13975.7026 ± 65.3201
14493.3087 ± 67.2566
15006.592 ± 67.9661
15525.9341 ± 71.2219
16042.2271 ± 72.4166

97.26
117.78
138.5
163.55
182.54
204.57

13555.1514 ± 0
14093.4814 ± 0
14631.8115 ± 0
15170.1416 ± 0
15708.4717 ± 0
16246.8018 ± 0

0 0
0 0
0 0

Global
Jour-
nal

32 16785.1318 16557.6751 ± 75.7913 227.46 16785.1318 ± 0 0
33 17323.4619 17069.2012 ± 76.9287 254.26 17323.4619 ± 0 0
34 17861.792 17586.7432 ± 81.2453 275.05 17861.792 ± 0 0
35 18400.1221 18099.7754 ± 83.0062 300.35 18400.1221 ± 0 0
36 18938.4521 18610.6458 ± 87.3431 327.81 18938.4521 ± 0 0
37 19476.7822 19118.961 ± 90.5547 357.82 19476.7822 ± 0 0
38 20015.1123 19632.1551 ± 97.5527 382.96 20015.1123 ± 0 0
39 20553.4424 20138.8757 ± 102.7702 414.57 20553.4424 ± 0 0
40 21091.7725 20639.2884 ± 109.3145 452.48 21091.7725 ± 0 0
41 21630.1025 21136.0545 ± 116.1857 494.05 21630.1025 ± 0 0

Figure 14: Table 2 :11
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