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remotely sensed data into a thematic map. 
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I. Introduction 

he image classification plays an important role in 
environmental and socioeconomic applications. In 
order to improve the classification accuracy, 

scientists have laid path in developing the advanced 
classification techniques.   [1-9] However, classifying a 
remotely sensed data into a thematic map is still a 
nightmare because of the following factors such as 
landscape complexity, image sensing and processing 
and classification approaches. The review concentrates 
on recent classification approaches and techniques 
which are often not available.  

a) Remote sensing classification process 

RS classification is generally a complex 
procedure which needs many factors to be considered. 
This procedure includes following steps that begins with 
the identification of suitable classification system, 
choosing appropriate training samples, processing of 
an image and extracting its features, applying a right 
and indeed classification method, post classification 
and accuracy assessments. 

  

Airborne and space borne sensor data comes 
under RS data stream, which varies in spatial, 
radiometric, spectral and temporal resolutions. In order 
to have better image classification a suitable RS data 
needs to be collected, which depends upon strength 
and weakness of

 
sensor data. In literature the 

characteristics of remotely sensed data is summarized 
by [10], [11] in

 
spectral,

 
radio metric, spatial and 

temporal  resolutions  with   polarization  and  angularity.   
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It is preferred to consider the factors while selecting 
suitable sensor data as per the user’s need, which 
includes scaling, study area characteristics, availability 
of various image data and their characteristics, cost, 
time constraints and analyst’s experience in using 
selected images. Scaling determines the study area; 
earlier research encountered a problem of image 
resolution of remotely sensed data in classification. In 
regular practice, a fine-scale classification system is 
adopted in order to achieve high spatial resolution data.  
For example, IKONS and SPOT 5 HRG are at regional 
level medium spatial resolution data. However, the 
influence of atmospheric conditions in moist and tropical 
regions cannot be neglected and they are often an 
obstacle for capturing the high quality sensor data.  
Therefore, it always proves to be beneficiary to have 
multiple sources of sensor data. 

c) Selection of classification system and training 
samples 

A better classification can be achieved only 
when we consider a suitable classification system with 
sufficient number of training samples.  Generally, in a 
wide variety of applications we adopt hierarchy 
classification systems because different conditions are 
taken into account.  A classification system should 
consider spatial resolution of selected RS data, 
compatibility with its previous work, image processing 
and classification algorithm availability and time 
constraints. The ultimate goal of choosing any 
classification system is to satisfy the need of an end 
user.   

The image classification broadly depends on 
number of training samples and their 
representativeness. Training samples can be prepared 
by fieldwork or it can also be obtained from other means 
such as aerial photographs of fine spatial resolution and 
satellite images. The results of the classification are 
affected by the selection of training data, which 
generally may be based on single pixel, seed or 
polygon, also affected by fine spatial resolution image 
data if proper care is not taken. If coarse resolution data 
is used for classification data then the selection of TS 
becomes tedious under complex and heterogeneous 
case studies as it contains large volumes of mixed 
pixels. 

d) Data Preprocessing 
The image preprocessing is a technique which 

includes detection, restoration of bad lines, geometric 
rectification, radio metric calibration, atmospheric and 
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topographic correction. If data is collected from different 
sources, it is necessary to check the quality before 
stepping into classification. If the single data image is 
utilized in classification atmospheric corrections may not 
be required but on the other hand it becomes 
mandatory for a multi-sensor data. A variety of 
correction techniques are presented [12-23].If the study 
area includes rugged or mountainous regions a 
topographic correction is needed, which is detailed [24-
30]. 

e) Feature Extraction and Selection 
The quality of an image classification depends 

on the selection of suitable variables.  A variety of 
variables used in classification includes spectrum 
signature, vegetation indices, transformed images, 
textual information, multi temporal images, multi sensor 
images and ancillary data. The process of feature 
extraction is needed in order to minimize data 
redundancy in remotely sensed data or to excavate 
specific land cover information, that includes principle 
component analysis, minimum noise fraction transform 
discriminant analysis, decision boundary, feature 
extraction, non parametric weighted feature extraction, 
wavelet transform and spectral mixture analysis. 

f) Selection of suitable classification method 
The question of choosing a classification 

method is ambiguous because many factors such as 
spatial resolution of RD, multi-sensor data, availability of 
different classification software are involved. Each 
classification method has its own merits and demerits. 

g) Post classification processing 
Classification confusions arise in the regions 

such as urban areas, for example, consider between 
commercial and high intensity residential areas or 
between recreational grass and crops. In present 
example to reduce classification confusions we need to 
consider the property of spectral signature because it is 
similar to commercial and high intensity residential areas 
but on the other hand their population densities are 
different. Pasture and crops are largely located away 
from residential areas with sparse houses and low 
population densities, at this stage expert knowledge can 
be developed based on the relationship between 
housing or population densities and urban land use 
classes to help separate recreational grass from pasture 
and crops. 

II. Evaluation of Classification 
Performance 

Evaluating the classified results is an important 
step in classification procedure. The evaluation process 
may include qualitative evaluation based on expert

 

knowledge to quantitative accuracy based on sampling 
strategies. The classification accuracy assessment is 

the most common approach for the evaluation of 
classification performance [31-32]. 

a) Classification of accuracy assessment 
By the knowledge of sources of errors, 

classification accuracy assessment can be implemented 
in addition to classification error, position error, which 
resulting from registration, interpolating error and poor 
quality of training which may affect the classification 
accuracy. The classification accuracy assessment 
includes three basic steps 1.Sampling design, 
2.Response design,3. Estimation and Analysis 
procedures  

b) Advanced classification procedures 
The advanced classification procedures such 

as neural networks, fuzzy sets and expert systems are 
highly applied for image classification. In general image 
classification approaches it can be grouped as 
supervised or unsupervised, parametric and 
nonparametric or hard and soft classifiers or per pixel, 
sub pixel, per field. Table provides brief description of 
these categories. 

c) Use of multiple features of remote sensed data 
Any remote sensed data generally contains 

many unique and special spectral radio metric temporal 
and polarization characteristics; the effective use of 
these features can improve the classification accuracy. 
The summary of table 3 presents the research efforts in 
order to improve the classification accuracy by 
considering the features of remote sensed data. 

III. Discussions 

a) Uncertainties in image classification 
Uncertainties in image classification occur at 

different stages, influence classification accuracy. 
Improving and understanding the stages those 
contribute to uncertainty results in quality image 
classification.  

b) Impact of spatial resolution 
Spatial resolution is an important factor that 

affects classification details and accuracy, which 
influences the selection of a classification approach. 
Various reduction techniques have been developed and 
presented by different authors in their literature.  

c) Selection of suitable variables 
In practice, making a complete use of multiple 

features of different sensor data, implementing feature 
extraction and selecting variables as input for a 
classification procedure becomes important. 

IV. Conclusion 

This study helps upcoming scientists and 
researchers for opting a suitable classification 
procedure in their specific study. In our presentation we 
have concentrated extensively on the work done from 
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the past decade that includes 1. Development and 
advanced classification algorithms such as sub pixel, 
per field and acknowledged based classification 
algorithms; 2. We have considered various remote 

sensing features including spectral, spatial, multi 
temporal and multi sensor information; 3. Incorporating 
an ancillary data into classification procedures that 
includes topography, soil, road and census data. 

Table 1 : A taxonomy  of image classification methods 

Criteria Categories Characteristics Example  of 
classifiers 

Whether  
training 

samples are 
used or not 

Supervised 
classification 
approaches 

Land cover classes are defined. Sufficient 
reference data is available and used as 

training samples. The signatures 
generated  from the training  samples are 
then used to train the classifier to classify 

the spectral data  into a thematic  map 

Maximum likelihood, 
minimum distance, 

artificial neural network, 
decision tree 

classifier. 

Unsupervised 
classification 
approaches 

Clustering-based algorithms are used to 
partition the spectral image into a number 

of spectral classes based on the 
statistical information inherent in the 

image. No prior definitions of the classes 
are used. The analyst is responsible for 

labeling and merging the spectral classes 
into meaningful classes. 

ISODATA, K-means 
clustering algorithm 

 

Whether  
parameters 

such as 
mean vector 

and 
covariance 
matrix  are 

used or not 
 

Parametric 
classifiers 

Gaussian distribution is assumed.  The 
parameters (e.g. mean vector and 

covariance matrix) are often generated from 
training samples. When landscape is 
complex, parametric classifiers often 

produce ‘noisy’ results. Another major 
drawback is that it is difficult to integrate 

ancillary data, spatial and contextual 
attributes, and non-statistical information into 

a classification procedure. 

Maximum likelihood, 
linear discriminant 

analysis. 

Non-Parametric 
classifiers 

No assumption about the data is required.  
Non-parametric classifiers do not employ 
statistical parameters to calculate class 

separation and are especially suitable for 
incorporation of non-remote-sensing data 

into a classification procedure. 

Artificial neural network, 
decision tree classifier, 
evidential reasoning, 

support vector machine, 
expert system. 

Which kind of 
pixel 

information is 
used 

Per-pixel 
classifiers 

Traditional classifiers typically develop a 
signature by combining the spectra of all 

training-set pixels from a given feature. The 
resulting signature  contains  the 

contributions of all materials present  in the 
training-set  pixels, ignoring  the mixed pixel 

problems 

Most of the classifiers, 
such as maximum 

likelihood, minimum 
distance, artificial neural 
network, decision tree, 

and support vector 
machine. 

Sub pixel 
classifiers 

The spectral value of each pixel is assumed 
to be a linear or non-linear combination of 
defined pure materials (or end members), 

providing proportional membership of each 
pixel to each end member. 

Fuzzy-set classifiers, 
sub pixel classifier, 

spectral mixture 
analysis. 

Which kind of 
pixel 

information is 
used 

Object-oriented 
classifiers 

Image segmentation merges pixels into 
objects and classification is conducted 

based on the objects, instead of an 
individual pixel. No GIS vector data are used. 

E Cognition 

Per-field 
classifiers 

GIS plays an important role in per-field 
classification, integrating raster and vector 
data in a classification.  The vector data are 

often used to subdivide an image into 
parcels, and classification is based on the 

parcels, avoiding the spectral variation 
inherent in the same class. 

GIS-based  
classification 
approaches 

Whether  Hard  Making a definitive decision about the land Most of the classifiers, 
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output is a 
definitive 
decision 

about  land 
cover class or 

not 

classification cover class that each pixel is allocated to a 
single class. The area estimation by hard 
classification may produce large errors, 

especially from coarse spatial resolution data 
due to the mixed pixel problem. 

such as maximum 
likelihood, minimum 

distance, artificial neural 
network,  decision tree, 

and support  vector 
machine. 

 
Soft (fuzzy) 

classification 
Providing for each pixel a measure of the 
degree of similarity for every class. Soft 

classification provides more information and 
potentially a more accurate result, especially 

for coarse spatial resolution data 
classification. 

Fuzzy-set classifiers, 
sub pixel classifier, 

spectral mixture 
analysis. 

Whether  
spatial 

information is 
used or not 

Spectral 
classifiers 

Pure spectral information is used in image 
classification. A ‘noisy’ classification result is 
often produced due to the high variation in 
the spatial distribution of the same class. 

Maximum likelihood, 
minimum distance, 

artificial neural network. 

Contextual 
classifiers 

The spatially neighboring pixel information is 
used in image classification. 

Iterated conditional 
modes, point-to-point 
contextual correction, 
and frequency-based 
contextual classifier. 

Spectral-
contextual 
classifiers 

Spectral and spatial information is used in 
classification. 

Parametric or non-parametric classifiers are 
used to generate 

initial classification images and then 
contextual classifiers are 

implemented in the classified images 

ECHO, combination of 
parametric or non-

parametric and 
contextual algorithms 

                               

Table 2 : A summary of classification methods 

 Category Advanced classifiers References 

Per-pixel 
algorithms 

Neural network [33], [34], [35],[36], [37], [38], [39], [40], 
[41], [42], [43] 

Decision tree classifier, Spectral angle classifier, 
Supervised iterative classification (multistage 

classification) 
 

[44], [45], [46],[47], 
[32],[8],[48],[49],[50], [51],[4] 

Enhancement-classification approach,MFM-5-Scale 
(Multiple-Forward-Mode approach to running the 5-Scale 

geometric-optical reflectance model) 

[52],[53] 

Iterative partially supervised classification based on a 
combined use of a Radial Basis Function network and a 

Markov Random Field approach 

[54] 

Classification by progressive generalization Support 
vector machine 

[31],[55], [56], [57], [58],[59],[60], [61], 
[62], [63] 

Unsupervised classification based on independent 
component 

analysis mixture model, Optimal iterative unsupervised 

[64],[65], [66] 

Model-based unsupervised classification, Linear 
constrained discriminant analysis 

[67], [68] ,[69], [70] 

Multispectral classification based on probability density 
functions, 

Layered classification, Nearest-neighbor classification, 
Selected pixel classification 

[71],[72],[73][74],[75],[76], [77] 

Sub pixel 
algorithms 

Imagine sub pixel classifier, Fuzzy classifier, Fuzzy expert 
system 

[78], [3],[79],[80],[81], [82] 

Fuzzy neural network, Fuzzy-based multi sensor data 
fusion classifier, Rule-based machine-version approach 

[3], [83],[84], [80], [85], [86], [87] 

Linear regression or linear least squares inversion [88],[89] 

© 2015  Global Journals Inc.  (US)
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Per-field algorithms
 

Per-field or per-parcel classification
 

[90],[5],[91]
 

Per-field classification based on per-pixel or sub pixel 
classified image

 [92]
 

Parcel-based approach with two stages: per-parcel 
classification using conventional statistical classifier and

 

then knowledge-based correction using contextual 
information

 

[93]
 

Map-guided classification, Object-oriented classification, 
Graph-based, structural pattern recognition system, 

Spectral shape classifier
 

[94], [95],[96],[97], [98],[99],[100], [101], 
[102], [103]

 

Contextual-based
 

approaches
 ECHO (Extraction and Classification of Homogeneous 

Objects)
 [104],[105], [106]

 

Supervised relaxation classifier, Frequency-based 
contextual classifier

 [107], [108], [109]
 

Contextual classification approaches for high and low 
resolution data, respectively and a combination of both 

approaches
 

[110],[111]
 

Contextual classifier based on region-growth algorithm, 
Fuzzy contextual classification, Iterated conditional 

modes
 

[112], [113]
 

Fuzzy contextual classification, Iterated conditional 
modes, Sequential maximum a posteriori classification

 [113], [59],[114], [115]
 

Point-to-point
 
contextual correction, Hierarchical 

maximum a posteriori classifier, Variogram  texture 
classification

 

[116], [117], [118]
 

Hybrid approach incorporating contextual information
 

with per-pixel classification
 [6]

 

Two stage segmentation procedure
 

[119]
 

Knowledge-based
 

algorithms
 Evidential reasoning classification, Knowledge-based 

classification,Rule-based syntactical approach
 [120],[121],[122], [123],[7],[124],[125]

 

[107],[126], [97], [127],[128]
 

Visual fuzzy classification based on use of exploratory 
and interactive visualization techniques

 [129]
 

Multi temporal classification based on decision fusion
 

[130]
 

Supervised classification with ongoing learning capability 
based on nearest neighbor rule

 [131]
 

Combinative
 

approaches of
 

multiple classifiers
 

Multiple classifier system (BAGFS: combines bootstrap 
aggregating with multiple feature subsets)

 [132]
 

A consensus builder to adjust classification output (MLC,
 

expert system, and neural network)
 [133]

 

Integrated expert system and neural network classifier
 

[133]
 

Improved neuro-fuzzy image classification system, 
Spectral and contextual classifiers, Mixed contextual and 

per-pixel classification,
 

Combination of iterated contextual probability classifier 
and MLC

 

[134],[116],[135],[136]
 

Combination of neural network and statistical consensus 
theoretic classifiers

 [137]
 

Combination of MLC and neural network using Bayesian  
techniques

 [138]
 

 
Combining multiple classifiers based on product rule, 
staked Regression, Combined spectral classifiers and 
GIS rule-based classification, Combination of MLC and 

decision tree classifier,
 

Combination of non-parametric classifiers (neural 
network, decision tree classifier, and evidential 

reasoning),Combined supervised and unsupervised 
classification

 

[139],[140],[141][142],[97],[143]
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Table 3 : Approaches for improving classification accuracy using multiple features of RS data

Method Features References 

Use of 

textures 
First-, second-, and third-order statistics in the spatial domain; 
texture features from the texture spectrum and from grey level 

different vector 

[144]  

Grey-level co-occurrence matrices(GLCM) [145],[146],[147],[148], [149]  

Co-occurrence matrices, grey-level difference, texture-tone 
analysis ,features derived from Fourier spectrum, and Gabor 

filters 

[150] 

GLCM, grey level difference histogram, sum and different 
histogram 

[151], [152] 

Fractal information [153],[154] 

Triangulated primitive neighborhood method, Semi variogram, 
Geo statistical analysis, Gabor filtering 

[155], [156], [157], [158], [159] 

Fusion of Multi 
sensor or multi 
resolution data 

AIRSAR and TOPSAR, SPOT MS and PAN data, TM and aerial 
photographs, TM and radar, TM and IRS-1C-PAN data, TM 

and SPOT PAN data, SPOT and radar 

[160], [161], [162], [163], [164], 
[165], [166], [167], [168] 

Hyper spectral and radar, IRS LISS III and PAN [169], [170] 

Use of multi 
temporaldata 

Using multi temporal optical Images, Using multi temporal 
SAR images, Using multi temporal optical and SAR images 

[171], [172], [173],[174],[175], 
[176], [177], [178], [179] 

Image 
transforms 

Fuzzy partition method, Stepwise regression analysis [180], [180] 

Principal component analysis, Tasseled cap [180] [173] 

Rotational transformation, Wavelet transform [181] [182] 

Spectral mixture analysis, Gaussian mixture discriminant 
Analysis, Normalized difference built-up Index 

[183], [184],[185], [186],  [187], 
[188],[189], [190], [191] 

Fine spatial 
resolution data 

IKONOS or Quick Bird, ADAR digital multispectral image, 
Aerial photography and lidar data, Color infrared aerial 

images 

[192], [193], [95], [194], [195], 
[109],       [196],[197], [97], [198], 

[199] 

Hyper –spectral 
data 

AVIRIS [200],  [201], [202],  [203], [204], 
[205] 

HyMap hyper spectral digital data, DAIS hyper spectral data, 
EO-1 Hyperion, Data obtained from Field Spec Pro FR 

spectro radiometer 

[127] [206] [207], [208] 

         

Table 4 : Techniques to improve classification accuracy for ancillary data; A summary

                    
Method

 

Features
 

References
 

Use of ancillary 
data

 

DEM Topography,
 
land use, and soil Maps

  
[209] [210]

 Road density,  Road coverage, Census data
  

[211] [212] [213], [214] [173]
 Stratification

 
Based on topography, Based on census data, Based on 

illumination and ecological zone, Based on shape index of the 
Patches

 

 
[215], [210], [216], [217]

 

Post 
classification 
processing

 

Kernel-based spatial reclassification
  

[218]
 Using zoning and housing density data to modify the initial 

classification result, Using contextual correction,
 

 
[213], [219]

 
Using filtering based on co occurrence Matrix, Using polygon 
and rectangular mode filters, Using expert system to perform 
post classification sorting, Using knowledge-based system to 

correct misclassification
 

 
[220], [221], [222], [223]

 

Use of
 multisource data

 

Spectral, texture, and ancillary data (such as DEM, soil, 
existing GIS-based maps)

 

[123], [224],[225],[137],[226], 
[227],[7],[228]
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