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An Algorithm for Integration, Differentiation and 
Finding Root Numerically 

N. Rahman α, Aminul Islam σ, Pulakesh Gain ρ, B. K. Datta Ѡ  & R. C. Bhowmik ¥

Abstract- Numerical analysis concerns the development of 
algorithms for solving various types of problems of   
mathematics; it is a vast-ranging field having deep interaction 
with computer science, mathematics, engineering, and the 
sciences. Numerical analysis mainly consists of Numerical 
Integration, Numerical Differentiation and finding Roots 
numerically. In this paper we develop an algorithm 
combination of Numerical Integration (Trapezoidal rule, 
Simpson’s 𝟏𝟏/𝟑𝟑 rule, Simpson’s 𝟑𝟑/𝟖𝟖 rule and Weddle’s rule.), 
Numerical Differentiation (Euler, modified Euler and Runge-
Kutta second and fourth order) and finding Roots (Bisection 
method and False position method) numerically. 

I. Introduction 

umerical analysis is the area of mathematics and 
computer science that creates, analyzes, and 
implements algorithms for solving numerically 

the problems of continuous mathematics.  Such 
problems originate generally from real-world 
applications of algebra, geometry, and calculus, and 
they involve variables which vary continuously. The 
formal academic area of numerical analysis varies from 
highly theoretical mathematical studies to computer 

science issues involving the effects of computer 
hardware and software on the implementation of 
specific algorithms[5]. 

An algorithm is a procedure or formula for 
solving a problem. The word derives from the name of 
the mathematician, Mohammed ibn-Musa al-Khwarizmi. 

Given a set of data of points 
(𝑥𝑥0,𝑦𝑦0), (𝑥𝑥1,𝑦𝑦1), … … . . , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 )  of a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) , 
where 𝑓𝑓(𝑥𝑥)  is not known explicitly, it is required to 
compute the value of the definite integral 

                                      𝐼𝐼 = ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥 𝑏𝑏
𝑎𝑎                              (1) 

We derive a general formula for numerical 
integration using Newton’s forward difference formula. 
Let the interval [𝑎𝑎, 𝑏𝑏] be divided into n equal subintervals 
such that            

𝑎𝑎 = 𝑥𝑥0 < 𝑥𝑥1 … … … … … … … … . < 𝑥𝑥𝑛𝑛 = 𝑏𝑏 

Clearly, 𝑥𝑥𝑛𝑛 = 𝑥𝑥0 + 𝑛𝑛 . Hence the integral 
becomes 𝐼𝐼 = ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥0
  

Approximating 𝑦𝑦  by Newton’s forward difference formula, we obtain. [4]  

   𝐼𝐼 = ∫ [𝑦𝑦0 + 𝑝𝑝∆𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)
2!

�∆2𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)(𝑝𝑝−2)
3!

�∆3𝑦𝑦0 + ⋯ ]𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛
𝑥𝑥0

 

Since 𝑥𝑥 = 𝑥𝑥0 + 𝑝𝑝ℎ, 𝑑𝑑𝑥𝑥 = ℎ 𝑑𝑑𝑝𝑝 and hence the above integral becomes 

     𝐼𝐼 = ℎ ∫ [𝑦𝑦0 + 𝑝𝑝∆𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)
2!

�∆2𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)(𝑝𝑝−2)
3!

�∆3𝑦𝑦0 + ⋯ ]𝑑𝑑𝑝𝑝𝑛𝑛
𝑜𝑜

 

                                                           ⇒ ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛
𝑥𝑥0

= 𝑛𝑛ℎ[𝑦𝑦0 + �𝑛𝑛
2
�∆𝑦𝑦0 + �𝑛𝑛(2𝑛𝑛−3)

12
�∆2𝑦𝑦0 +⋯ ]𝑑𝑑𝑝𝑝  

                                  (2)
 

From this general formula, we can obtain 
different integration formula by putting 𝑛𝑛 = 1,2,3 … … …

 

etc.
 

Programming language C is very flexible and 
powerful. It originally designed in the early 1970s [3]. It 
allows us to maximum control with minimum command. 
It
 
is recognized worldwide and used in a multitude of 

applications especially in Numerical Analysis. Along with 
other numerous benefits, we have used programming 
language C in this paper.
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Already B. K. Datta et all in [1] and [2] have 
given the algorithms of numerical differentiation and 
numerical integration. In this paper we have developed a 
combined algorithm of numerical differentiation, 
numerical integration and finding roots numerically.  

 

The outline of this paper is as follows: Section 2 
contains the brief description of the existing methods 
with methodology. In Section 3, we develop an 
algorithm, using the programming language C, which 
gives us the solution of a problem simultaneously 
regarding four popular existing numerical integration 
methods namely Trapezoidal rule, Simpson’s 1/3

 
rule, 

Simpson’s 3/8
 
rule and Weddle’s rule or the solution of 

an ordinary differential equation simultaneously 
regarding four popular existing methods namely Euler, 
modified Euler, Runge-Kutta second and fourth order or 

N 
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the solution of a problem simultaneously regarding two 
existing numerical methods namely Bisection method 
and False position method. Moreover, the simulator 
identifies the method that gives the best solution 
comparing with possible exact solution of the problem in 
each case. Conclusions are given at the end at                     
Section 4. 

II. Existing Methods 

We give a brief description of the existing 
methods of Numerical Integration like Trapezoidal rule, 

Simpson’s 1/3 rule, Simpson’s 3/8  rule and Weddle’s 
rule, methods of numerical differential equations like 
Euler, modified Euler, Runge-Kutta second and fourth 
order  and numerical methods namely Bisection method 
and False position method in this section with their 
methodology[2]. 

a) Trapezoidal Rule  

Putting 𝑛𝑛 = 1 in (2) all differences higher than 
the first will become zero and we obtain 

� 𝑦𝑦 𝑑𝑑𝑥𝑥

𝑥𝑥1

𝑥𝑥0

= ℎ �𝑦𝑦0 +
1
2∆𝑦𝑦0� = ℎ �𝑦𝑦0 +

1
2 (𝑦𝑦1 − 𝑦𝑦0)� =

ℎ
2 [𝑦𝑦0 + 𝑦𝑦1] 

For the next interval [𝑥𝑥1,𝑥𝑥2] and others we have 

the similar expression as ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥𝑥𝑥2
𝑥𝑥1

= ℎ
2

[𝑦𝑦1 + 𝑦𝑦2] and so 

on. And for the last interval [𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛 ] , we have 

∫ 𝑦𝑦
 
𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1
= ℎ

2
[𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛 ]. 

 

Combining all these expressions, we obtain the rule
 

   ∫ 𝑦𝑦
 
𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥0
= ℎ

2
[𝑦𝑦0 + 2(𝑦𝑦1 + 𝑦𝑦2 + ⋯𝑦𝑦𝑛𝑛−1) + 𝑦𝑦𝑛𝑛 ]

 

This is known as Trapezoidal rule.
 

 
 
 

b) Simson’s 1/3 Rule  Putting 𝑛𝑛 = 2
 
in (2) all differences higher than 

the first will become zero and we obtain
 

� 𝑦𝑦
 
𝑑𝑑𝑥𝑥 = 2ℎ[𝑦𝑦0 +

 
∆𝑦𝑦0 +

1
6∆

2𝑦𝑦0]

𝑥𝑥2

𝑥𝑥0

=
ℎ
3 [𝑦𝑦2 + 4𝑦𝑦1 + 𝑦𝑦0]

 

Similarly, ∫ 𝑦𝑦
 
𝑑𝑑𝑥𝑥𝑥𝑥4

𝑥𝑥2
= ℎ

3
[𝑦𝑦2 + 4𝑦𝑦3 + 𝑦𝑦4]

 
and finally 

∫ 𝑦𝑦
 
𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−2
= ℎ

3
[𝑦𝑦𝑛𝑛−2 + 4𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛 ]

 Combining all these expressions, we obtain
 

� 𝑦𝑦

 

𝑑𝑑𝑥𝑥

𝑥𝑥𝑛𝑛

𝑥𝑥0

=
ℎ
3 [𝑦𝑦0 + 4(𝑦𝑦1 + 𝑦𝑦3 +⋯+ 𝑦𝑦𝑛𝑛−1) + 2(𝑦𝑦2 + 𝑦𝑦4 + ⋯+

 

   . . .   +𝑦𝑦𝑛𝑛−2) + 𝑦𝑦𝑛𝑛 ]

This is known as Simson’s 1/3

 

rule.

 c)

 

Simson’s 3/8 Rule 

 
Putting 𝑛𝑛 = 3

 

in (2) all differences higher than the first will become zero and we obtain

 � 𝑦𝑦

 

𝑑𝑑𝑥𝑥

𝑥𝑥3

𝑥𝑥0

= 3ℎ[𝑦𝑦0 +
3
2∆𝑦𝑦0 +

9
12∆

2𝑦𝑦0 +
3

24∆
3𝑦𝑦0] =

3
8ℎ[𝑦𝑦0 + 3𝑦𝑦1 + 3𝑦𝑦2 + 𝑦𝑦3]

 
Similarly, ∫ 𝑦𝑦

 

𝑑𝑑𝑥𝑥𝑥𝑥6
𝑥𝑥3

= 3
8
ℎ[𝑦𝑦3 + 3𝑦𝑦4 + 3𝑦𝑦5 + 𝑦𝑦6]

 

and so on.

 Summing up all these, we obtain

 ∫ 𝑦𝑦
 
𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥0
= 3

8
ℎ[𝑦𝑦0 + 3𝑦𝑦1 + 3𝑦𝑦2 + 2𝑦𝑦3 +⋯+ 2𝑦𝑦𝑛𝑛−3 + 3𝑦𝑦𝑛𝑛−2 + 3𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛 ]

 

[13]

 This rule is known as Simson’s 3/8 rule.

 d)

 

Weddle’s Rule

 
Putting 𝑛𝑛 = 6

 

in (2) all differences higher than the first will become zero and we obtain 

 
� 𝑦𝑦

 

𝑑𝑑𝑥𝑥

𝑥𝑥6

𝑥𝑥0

=
3

10ℎ
[𝑦𝑦0 + 5𝑦𝑦1 + 𝑦𝑦2 + 6𝑦𝑦3 + 𝑦𝑦4 + 5𝑦𝑦5 + 𝑦𝑦6]

 Similarly, we obtain the general form
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� 𝑦𝑦 𝑑𝑑𝑥𝑥 =
3

10
ℎ[𝑦𝑦0 + 2(𝑦𝑦6 + 𝑦𝑦12 + ⋯⋯+ 𝑦𝑦𝑛𝑛−6) + 5(𝑦𝑦1 + 𝑦𝑦7 + ⋯⋯+ 𝑦𝑦𝑛𝑛−5) 5(𝑦𝑦5 + 𝑦𝑦11 +⋯⋯+ 𝑦𝑦𝑛𝑛−1)    

𝑥𝑥𝑛𝑛

𝑥𝑥0
+ 6(𝑦𝑦3 + 𝑦𝑦9 + ⋯⋯+ 𝑦𝑦𝑛𝑛−3) + 𝑦𝑦2 + 𝑦𝑦4 +⋯⋯+ 𝑦𝑦𝑛𝑛 ]

This is known as Weddle’s rule.

An Algorithm for Integration, Differentiation and Finding Root Numerically



     

 
 

e)

 

Euler Method

 

In mathematics

 

and computational science, the 
Euler method

 

is a first-order numerical

 

procedure for

 

solving ODEs with a given initial value. It is the most 
basic explicit method

 

for numerical ODEs[1]. 

 

i.

 

Procedure  
We consider the differential equation

 

  

                                              𝑦𝑦′ = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)

  

                                (3)

 

with the initial condition

 

    𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0

 

                   (4)   

 

Suppose that we wish to solve the equation (3) 
with (4) for the value of 𝑦𝑦

 

at 𝑥𝑥 = 𝑥𝑥𝑟𝑟 = 𝑥𝑥0 + 𝑟𝑟ℎ

 

(𝑟𝑟 =
1,2, … … … … . . )

 

Integrating (3) with 𝑦𝑦0

 

to 𝑦𝑦1

 

and𝑥𝑥0 to𝑥𝑥1 , we get 

𝑦𝑦1 − 𝑦𝑦0 = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 

Or,     𝑦𝑦1 = 𝑦𝑦0 + ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

                    (5)

 

Assuming that 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

 

in  𝑥𝑥0 ≤ 𝑥𝑥 ≤
𝑥𝑥1

 

,  this gives Euler’s formula

 

                 𝑦𝑦1 ≈ 𝑦𝑦0 + ℎ

 

𝑓𝑓(𝑥𝑥0,𝑦𝑦0)[since𝑥𝑥1 − 𝑥𝑥0 = ℎ]         (6)

 

Similarly for the range  𝑥𝑥1 ≤ 𝑥𝑥 ≤ 𝑥𝑥2

 

, we have 

𝑦𝑦2 = 𝑦𝑦1 + ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥2
𝑥𝑥1

 

Substituting  𝑓𝑓(𝑥𝑥1,𝑦𝑦1)

 

for  𝑓𝑓(𝑥𝑥, 𝑦𝑦)

 

where  
𝑥𝑥1 ≤ 𝑥𝑥 ≤ 𝑥𝑥2

 

, we have

 

𝑦𝑦2 ≈ 𝑦𝑦1 + ℎ

 

𝑓𝑓(𝑥𝑥1,𝑦𝑦1)

 

[ since𝑥𝑥2 − 𝑥𝑥1 = ℎ]

 

Proceeding in this way, we obtain the general formula

 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ

 

𝑓𝑓(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛), 𝑛𝑛 = 0,1,2, … … … … …

 

f)

 

Modified Euler’s method

 

i.

 

Procedure

 

We consider the differential equation       

 

                𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝑦𝑦)

 

                  (7)

 

With the initial condition  

 

𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0

 

                   (8)

 

Suppose that we wish to solve the equation (7) 
with (8) for the value of y at

 

𝑥𝑥 = 𝑥𝑥𝑟𝑟 = 𝑥𝑥0 + 𝑟𝑟ℎ

 

(𝑟𝑟 = 1,2, … … … … . . )

 

Integrating (7) with 𝑦𝑦0to 𝑦𝑦1

 

and 𝑥𝑥0to 𝑥𝑥1,  we get 

𝑦𝑦1 − 𝑦𝑦0 = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 

Or,                          

 

𝑦𝑦1 = 𝑦𝑦0 + ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

                 (9)

 

Now integrating (9) by means of trapezoidal rule 
to obtain 

 

                      

 

𝑦𝑦1 = 𝑦𝑦0 + �ℎ
2
� [𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1𝑦𝑦1)]

 

      (10)

 

We thus obtain the iterative formula

 

  

                                                                        𝑦𝑦1
(𝑛𝑛+1) = 𝑦𝑦0 + �ℎ

2
� [𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1,𝑦𝑦1

𝑛𝑛)]  ;𝑛𝑛 = 0,1, 2 , ..                 (11)

Where 𝑦𝑦1
𝑛𝑛 is the nth approximation to 𝑦𝑦1 . The 

iterative formula (11) can be started by choosing

 

𝑦𝑦1
0    

from Euler’s formula

 

𝑦𝑦1
0 = 𝑦𝑦0 + ℎ

 

𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

 

g)

 

Runge-Kutta method(Second order)

 

i.

 

Procedure

 

We consider the differential equation     𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)   (12)

 

With the initial condition                   𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0

 

    (13)

 

Suppose that we wish to solve the equation (12) 
with (13) for the value of 𝑦𝑦

 

at

 

                  

 

𝑥𝑥 = 𝑥𝑥𝑟𝑟 = 𝑥𝑥0 + 𝑟𝑟ℎ

 

(𝑟𝑟 = 1,2, … … … … . . )

 

Integrating (12) with 𝑦𝑦0to 𝑦𝑦1

 

and

 

𝑥𝑥0to 𝑥𝑥1,  we get 

𝑦𝑦1 − 𝑦𝑦0 = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 

Or                           𝑦𝑦1 = 𝑦𝑦0 + ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 

               (14)

 

Now integrating (14) by means of trapezoidal 
rule to obtain 

 
                

 

𝑦𝑦1 = 𝑦𝑦0 + (ℎ
2
)[𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1𝑦𝑦1)]           

 

(15) 

 
Substitute 𝑦𝑦1 = 𝑦𝑦0 + ℎ

 

𝑓𝑓(𝑥𝑥0,𝑦𝑦0)on the right side 
of equation (15), we obtain

 

  

                 𝑦𝑦1 = 𝑦𝑦0 + �ℎ
2
� [𝑓𝑓0 + 𝑓𝑓(𝑥𝑥0 + ℎ,𝑦𝑦0 + ℎ

 

𝑓𝑓0 )

  

    

 

(16)

 

                 

 

Where 𝑓𝑓(𝑥𝑥0,𝑦𝑦0) = 𝑓𝑓0, 𝑥𝑥1 − 𝑥𝑥0 = ℎ

 

Now set 𝑘𝑘1 = ℎ

 

𝑓𝑓0and 𝑘𝑘2 = ℎ

 

𝑓𝑓(𝑥𝑥0 + ℎ,𝑦𝑦0 + 𝑘𝑘1). 
And hence equation (16) becomes

 

𝑦𝑦1 = 𝑦𝑦0 + �1
2
� [𝑘𝑘1 + 𝑘𝑘2].

 

This is the Runge-Kutta second order formula.

 

h)

 

Runge-Kutta

 

method (Fourth order)

 

i.

 

Procedure

 

We mention the fourth order formulae defined 
by 

 

               𝑦𝑦1 = 𝑦𝑦0 +𝑊𝑊1𝑘𝑘1 +𝑊𝑊2𝑘𝑘2 + 𝑊𝑊3𝑘𝑘3 + 𝑊𝑊4𝑘𝑘4

 

         (17)

 

Where

 

𝑘𝑘1 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

  

𝑘𝑘2 = ℎ𝑓𝑓(𝑥𝑥0 + 𝛼𝛼0ℎ,𝑦𝑦0 + 𝛽𝛽0𝑘𝑘1)

  

𝑘𝑘3 = ℎ𝑓𝑓(𝑥𝑥0 + 𝛼𝛼1ℎ,𝑦𝑦0 + 𝛽𝛽1𝑘𝑘1 + 𝑣𝑣1𝑘𝑘2)

𝑘𝑘4 = ℎ𝑓𝑓(𝑥𝑥0 + 𝛼𝛼2ℎ,𝑦𝑦0 + 𝛽𝛽2𝑘𝑘1 + 𝑣𝑣2𝑘𝑘2 + 𝛿𝛿1𝑘𝑘3)            (18)

Where the parameters have to be determined 
by expanding both sides of (17) by Taylor’s series and 
securing agreement of terms up to and including those 
containing   ℎ4. The choice of the parameters is, again 
arbitrary and we have therefore several fourth order 
Runge-kutta formulae. If for example we set
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𝛼𝛼0 = 𝛽𝛽0 = 𝛼𝛼1 = 1
2

,𝛼𝛼2 = 1

  

𝛽𝛽1 = 1
2
�√2− 1�,𝛽𝛽2 = 0

  

𝑣𝑣1 = 1 − 1
√2

 

, 𝑣𝑣2 = − 1
√2

,𝛿𝛿1 = 1 + 1
√2

  

𝑊𝑊1 = 𝑊𝑊4 = 1
6

,𝑊𝑊2 = 1
3
�1− 1

√2
� ,𝑊𝑊3 = 1

3
�1 + 1

√2
�  

We obtain the method of Gill, whereas the choice

 

𝛼𝛼0 = 𝛼𝛼1 = 1
2

,𝛽𝛽0 = 𝑣𝑣1 = 1
2

  

𝛽𝛽1 =

 

𝛽𝛽2 = 𝑣𝑣2 = 0,𝛼𝛼2 = 𝛿𝛿1 = 1

  

𝑊𝑊1 = 𝑊𝑊4 = 1
6

,𝑊𝑊2 =

 

𝑊𝑊3 = 2
6

  

Leads to the fourth order Runge-Kutta formulae, 
whereas

 

𝑘𝑘1 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

  

𝑘𝑘2 = ℎ𝑓𝑓 �𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦0 + 1

2
𝑘𝑘1�

  

𝑘𝑘3 = ℎ𝑓𝑓 �𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦0 + 1

2
𝑘𝑘2�

  

𝑘𝑘4 = ℎ𝑓𝑓(𝑥𝑥0 + ℎ, 𝑦𝑦0 + 𝑘𝑘3)

  

Then 

 

𝑦𝑦1 = 𝑦𝑦0 +
1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)

 

i)

 

Bisection method

 

The

 

bisection method

 

in mathematics

 

is a root-
finding method

 

which repeatedly bisects an interval

 

and 
then selects a subinterval in which a root

 

must lie for 
further processing. It is a very simple and robust 
method, but it is also relatively slow. Because of this, it is 
often used to obtain a rough approximation to a solution 
which is then used as a starting point for more rapidly 
converging methods. The method is also called the 
binary search method

 

or the dichotomy method[4]. 

i.

 

Procedure

 

The method is applicable when we wish to solve 
the equation 0)( =xf

 

for

 

interval ],[ ba and

 

)(af the 
real

 

variable ,x

 

where f is a

 

continuous function

 

defined on an and )(bf have opposite signs. In this 
case a and b are said to bracket a root since, by the 
intermediate value theorem, the f must have at least 
one root in the interval ),( ba . At each step the method 
divides the interval in two by computing the midpoint 

2/)( bac += of the interval and the value of the 

function )(cf at that point. Unless c

 

is itself a root 
(which is very unlikely, but possible) there are now two 

possibilities: either )(af and )(cf have opposite signs 

and bracket a root, or )(cf and )(bf have opposite 
signs and bracket a root. The method selects the 
subinterval that is a bracket as a new interval to be used 

in the next step. In this way the interval that contains a 
zero of f

 

is reduced in width by %50 at each step. The 
process is continued until the interval is sufficiently 
small.

 

 
 

Explicitly, if )(af and )(cf are opposite signs, 

then the method sets c as the new value for b , and if 
)(bf

 

and )(cf are opposite signs then the method 

sets c as the new a . (If 0)( =cf then c may be taken 
as the solution and the process stops.) In both cases, 
the new )(af and )(bf

 

have opposite signs, so the 
method is applicable to this smaller interval.

 

j)

 

False Position Method

 

In problems involving arithmetic

 

or algebra, the 
false position method or regulafalsi

 

is used to refer to 
basic trial and error

 

methods of solving problems by 
substituting test values for the unknown quantities.

 

i.

 

Procedure

 

The poor convergence of the bisection method 
as well as its poor adaptability to higher dimensions 
(i.e., systems of two or more non-linear equations) 
motivate the use of better techniques[6].

 

One such 
method is the Method of False Position. Here, we start 
with an initial interval  ],[ 21 xx and we assume that the 
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function changes sign only once in this interval. Now we 
find an 3x in this interval, which is given by the 
intersection of the x axis and the straight line passing 
through  ))(,( 11 xfx and ))(,( 11 xfx . It is easy to verify 
that 3x is given by 

)()(
)()(

12

112
13 xfxf

xfxxxx
−

−
−=

Now, we choose the new interval from the two 
choices ],[ 31 xx or ],[ 23 xx depending on in which 
interval the function changes sign. 
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of the problem. In other words, finding 3x is a

 

static

 

procedure in the case of the bisection method since for 
a given 1x and 2x , it gives identical

 

3x , no matter what 
the function we wish to solve. On the other hand, the 
false position method uses the information about the 
function to arrive at 3x . 

 

III.

 

Algorithm

 

INPUT: Type your choice C.

 

If C==1

 

{ 

INPUT: function 𝑓𝑓, limits 𝑥𝑥0

 

and 𝑥𝑥𝑛𝑛 , number of division 𝑛𝑛, direct result 𝑟𝑟. 

Step-1: Compute ℎ = 𝑥𝑥𝑛𝑛−𝑥𝑥0
𝑛𝑛

  

Step-2: Set 𝑖𝑖 = 0

 

Step-3: While 𝑖𝑖 ≤ 𝑛𝑛, repeat Step- 4 

Step-4: Set 𝑦𝑦[𝑖𝑖] = 𝑓𝑓(𝑥𝑥0 + 𝑖𝑖ℎ)

 

Step-5: Set 𝑖𝑖 = 1

 

Step-6: While 𝑖𝑖 < 𝑛𝑛, repeat Step-7 
Step-7: Set 𝑠𝑠𝑠𝑠𝑠𝑠_1 = 𝑠𝑠𝑠𝑠𝑠𝑠_1 + 2𝑦𝑦[𝑖𝑖]

 

            

 

If 𝑖𝑖%2 = 0

 

           Set 𝑠𝑠𝑠𝑠𝑠𝑠_2 = 𝑠𝑠𝑠𝑠𝑠𝑠_2 + 2𝑦𝑦[𝑖𝑖]

 

              Else

 

            Set 𝑠𝑠𝑠𝑠𝑠𝑠_2 = 𝑠𝑠𝑠𝑠𝑠𝑠_2 + 4𝑦𝑦[𝑖𝑖]

 

             If 𝑖𝑖%3 = 0

 

           Set 𝑠𝑠𝑠𝑠𝑠𝑠_3 = 𝑠𝑠𝑠𝑠𝑠𝑠_3 + 2𝑦𝑦[𝑖𝑖]

 

             Else

 

           Set 𝑠𝑠𝑠𝑠𝑠𝑠_3 = 𝑠𝑠𝑠𝑠𝑠𝑠_3 + 3𝑦𝑦[𝑖𝑖]

 

                   𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1 = (ℎ/2) ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_1)    
                𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2 = (ℎ/3) ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_2) 
               

 

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3 = (3ℎ/8) ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_3)  
            If 𝑖𝑖%6 = 0

 

           Set 𝑠𝑠𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 2𝑦𝑦[𝑖𝑖]

 

            Else if 𝑖𝑖%3 = 0

 

            Set 𝑠𝑠𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 6𝑦𝑦[𝑖𝑖]

 

             Else 

 

            Set 𝑠𝑠𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 𝑦𝑦[𝑖𝑖] 
            Else If(𝑖𝑖%6 == 1||𝑖𝑖%6 == 5)

 

            𝑆𝑆𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 5𝑦𝑦[𝑖𝑖] 
            Else

 

The false position method differs from the 
bisection method only in the choice it makes for 
subdividing the interval at each iteration. It converges 
faster to the root because it is an algorithm which uses 
appropriate weighting of the initial end points 1x and 

2x   using the information about the function, or the data 

           𝑆𝑆𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 𝑦𝑦[𝑖𝑖]; 

           𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4 = �3ℎ
8
� ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_4)  

Step-8:  Set  a=  |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1− 𝑟𝑟|,𝑏𝑏 = |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2− 𝑟𝑟|, 𝑐𝑐 = |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3− 𝑟𝑟|, 𝑑𝑑 = |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4− 𝑟𝑟| 

If(𝑎𝑎 < 𝑏𝑏 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 < 𝑐𝑐)
If(𝑎𝑎 < 𝑑𝑑)
𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1 
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             If(𝑏𝑏 < 𝑎𝑎

 

𝑎𝑎𝑛𝑛𝑑𝑑

 

𝑏𝑏 < 𝑐𝑐)

 

 

If(𝑏𝑏 < 𝑑𝑑)

 
 

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2 

 

Else

 

 

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4 
              If(𝑐𝑐 < 𝑎𝑎

 

𝑎𝑎𝑛𝑛𝑑𝑑

 

𝑐𝑐 < 𝑏𝑏)

 

 

If(𝑐𝑐 < 𝑑𝑑)

 
 

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3 

 

Else

 
 

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4 
OUTPUT:

 

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1, 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2, 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3 and t_𝑠𝑠𝑠𝑠𝑠𝑠_4 with message which sum is most accurate. 

 

STOP.

 

}[2]

 

Else If C==2

 

{ 

INPUT: function 𝑓𝑓(𝑥𝑥,𝑦𝑦), initial condition (𝑥𝑥0,𝑦𝑦0), interval

 

ℎ, value of 𝑥𝑥, direct result 𝑟𝑟.

 

Step-1: Set n= (𝑥𝑥 − 𝑥𝑥0)/ℎ

 

,𝑦𝑦00 = 𝑦𝑦0,𝑦𝑦0𝑒𝑒 = 𝑦𝑦0,𝑦𝑦02 = 𝑦𝑦0

 
  

𝑦𝑦04 = 𝑦𝑦0,𝑦𝑦1 = 𝑦𝑦00 + ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦00)

 

Step-2: Set 𝑖𝑖 = 1

 

Step-3: While 𝑖𝑖 ≤ 𝑛𝑛, repeat Step-4 to step-7 

Step-4: Set 𝑗𝑗 = 1

 

Step-5: While 𝑗𝑗 ≤ 𝑖𝑖

 

repeat step-10

 

Step-6: Set 𝑥𝑥1 = 𝑥𝑥0 + ℎ,𝑦𝑦10 = 𝑦𝑦00 + 1
2
ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1,𝑦𝑦1),𝑦𝑦1 = 𝑦𝑦10

 

Step-7: Set  𝑦𝑦1𝑒𝑒 = 𝑦𝑦0𝑒𝑒 + ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0𝑒𝑒),𝑘𝑘11 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦04 ),𝑘𝑘22 = ℎ𝑓𝑓(𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦04 + 1

2
𝑘𝑘11 )

   

   

                             𝑘𝑘33 = ℎ𝑓𝑓 �𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦04 + 1

2
𝑘𝑘22� , 𝑘𝑘44 = ℎ𝑓𝑓(𝑥𝑥0 + ℎ, 𝑦𝑦04 + 𝑘𝑘33 )

 

                                          𝑟𝑟4 = 𝑦𝑦04 + (𝑘𝑘11 + 2𝑘𝑘22 + 2𝑘𝑘33 + 𝑘𝑘44 )/6

 

                                              𝑘𝑘1 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦02 ),𝑘𝑘2 = ℎ𝑓𝑓(𝑥𝑥0 + ℎ,𝑦𝑦02 + 𝑘𝑘1)

 

  

                                         𝑦𝑦1𝑟𝑟2 = 𝑦𝑦02 +
1
2

(𝑘𝑘1 + 𝑘𝑘2), 𝑦𝑦0𝑒𝑒 = 𝑦𝑦1𝑒𝑒 ,𝑦𝑦00 = 𝑦𝑦10

 

  

                                                      𝑦𝑦04 = 𝑦𝑦1𝑟𝑟4,𝑦𝑦02 = 𝑦𝑦1𝑟𝑟2, 𝑥𝑥0 = 𝑥𝑥𝑛𝑛

 

Step-8: Set 

 

𝑎𝑎 =  | 𝑦𝑦1𝑒𝑒 − 𝑟𝑟|,𝑏𝑏 = |𝑦𝑦10 − 𝑟𝑟|, 𝑐𝑐 = |𝑦𝑦1𝑟𝑟2 − 𝑟𝑟|,𝑑𝑑 = |𝑦𝑦1𝑟𝑟4 − 𝑟𝑟|

 

 

If(𝑎𝑎 < 𝑏𝑏

 

𝑎𝑎𝑛𝑛𝑑𝑑

 

𝑎𝑎 < 𝑐𝑐)

 
 

If(𝑎𝑎 < 𝑑𝑑)

 

 

𝑦𝑦1𝑒𝑒

 
 

Else

 
 

𝑦𝑦1𝑟𝑟4
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Else

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4 

If(𝑏𝑏 < 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑏𝑏 < 𝑐𝑐)
If(𝑏𝑏 < 𝑑𝑑)

𝑦𝑦10

Else

𝑦𝑦1𝑟𝑟4
If(𝑐𝑐 < 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 < 𝑏𝑏)
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Else

 

 

𝑦𝑦1𝑟𝑟4

 

Output: 𝑦𝑦1𝑒𝑒 ,𝑦𝑦10 ,𝑦𝑦1𝑟𝑟2

 

and 𝑦𝑦1𝑟𝑟4

 

with message which method gives best solution.

 

}[1]

 

Else

 

If C==3

 

{ 

INPUT:  function f

 

end points ;,ba initial approximations ;, 10 pp

 

tolerance TOL, maximum number of  iterations 

N

 

direct result r .

 

Step-1: Set ;2=i

  

 

);( 00 pfq =

 

             ).( 11 pfq =             

 

Step-2: While Ni ≤ do Steps 3-7.

 

Step-3: Set )/()( 010111 qqppqpp −−−=

  

Step-4: If ≤− || 1pp

 

TOL then 

 

              OUTPUT )( p ;

 

               STOP.

 

Step-5: Set ;1+= ii

 

                   ).( pfq =

  

Step-6: If 0* 1 <qq

 

then set 

 

 

     ;10 pp =

 

                   .10 qq =

 

Step-7: Set pp =1 ;

 

 

      .1 qq =   

Step-8: OUTPU (failure)

 

Step-9: Set ;1=i

 

                   ).(afFA =

 

Step-10: While Ni ≤ do steps 11-14

 

Step-11: Set ;2/)( ababi −+=

 

                         ).(bifFB =

  

Step-12: If FB=0 or <
−
2

ab

 

TOL then

 

If(𝑐𝑐 < 𝑑𝑑)
𝑦𝑦1𝑟𝑟2

                OUTPUT )(bi
      STOP.

Step-13: .1+= ii
Step-14: If 0* >FBFA then set bia = ;
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  FA=FB

 

 

  Else set bib =

 

Step-15: OUTPUT(failure)

 

Step-16: Set  |||,| rbidrpc −=−=

 

 

  If (c<d) then

 

 P 

 

Else

 
 

bi

 

OUTPUT: A message which root is most accurate between Bisection and False position method.

 

             STOP.

 

} 
Else

 

STOP.  

IV.

 

Conclusion 

In this paper, we develop an algorithm

 

incorporated with Numerical Integration (Trapezoidal 
rule, Simpson’s 1/3

 

rule, Simpson’s 3/8

 

rule and 
Weddle’s rule.), Numerical Differentiation (Euler, 
modified Euler and Runge-Kutta second and fourth 
order) and finding Roots (Bisection method and False 
position method) numerically. We observed that the 
result obtained according to our procedure is 
completely identical with the hand calculation and save 
our time and labour. Moreover, Weddle’s rule gives the 
best solution, the Runge-Kutta fourth order gives

 

the 
best solution and

 

the False position method

 

gives the 
best solution in Numerical Integration,

 

Numerical 
Differentiation and finding Roots numerically 
respectively. 
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