
© 2014. N. Rahman, Aminul Islam, Pulakesh Gain, B. K. Datta & R. C. Bhowmik. This is a research/review paper, distributed
under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Global Journal of Researches in Engineering: J
General Engineering
Volume 14 Issue 7 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

An Algorithm for Integration, Differentiation and Finding Root
Numerically

 By N. Rahman, Aminul Islam, Pulakesh Gain, B. K. Datta

& R. C. Bhowmik

Pabna University of Science & Technology (PUST), Bangladesh

Abstract- Numerical analysis concerns the development of algorithms for solving various types of
problems of mathematics; it is a vast-ranging field having deep interaction with computer
science, mathematics, engineering, and the sciences. Numerical analysis mainly consists of
Numerical Integration, Numerical Differentiation and finding Roots numerically. In this paper we
develop an algorithm combination of Numerical Integration (Trapezoidal rule, Simpson’s 𝟏𝟏/𝟑𝟑

rule, Simpson’s 𝟑𝟑/𝟖𝟖

rule and

Weddle’s rule.), Numerical Differentiation (Euler, modified Euler and

Runge- Kutta second and fourth order) and finding Roots (Bisection method and False position
method) numerically.

GJRE-J Classification : FOR Code: 091307, 010399

AnAlgorithmforIntegrationDifferentiationandFindingRootNumerically

Strictly as per the compliance and regulations of:

An Algorithm for Integration, Differentiation and
Finding Root Numerically

N. Rahman α, Aminul Islam σ, Pulakesh Gain ρ, B. K. Datta Ѡ & R. C. Bhowmik ¥

Abstract- Numerical analysis concerns the development of
algorithms for solving various types of problems of
mathematics; it is a vast-ranging field having deep interaction
with computer science, mathematics, engineering, and the
sciences. Numerical analysis mainly consists of Numerical
Integration, Numerical Differentiation and finding Roots
numerically. In this paper we develop an algorithm
combination of Numerical Integration (Trapezoidal rule,
Simpson’s 𝟏𝟏/𝟑𝟑 rule, Simpson’s 𝟑𝟑/𝟖𝟖 rule and Weddle’s rule.),
Numerical Differentiation (Euler, modified Euler and Runge-
Kutta second and fourth order) and finding Roots (Bisection
method and False position method) numerically.

I. Introduction

umerical analysis is the area of mathematics and
computer science that creates, analyzes, and
implements algorithms for solving numerically

the problems of continuous mathematics. Such
problems originate generally from real-world
applications of algebra, geometry, and calculus, and
they involve variables which vary continuously. The
formal academic area of numerical analysis varies from
highly theoretical mathematical studies to computer

science issues involving the effects of computer
hardware and software on the implementation of
specific algorithms[5].

An algorithm is a procedure or formula for
solving a problem. The word derives from the name of
the mathematician, Mohammed ibn-Musa al-Khwarizmi.

Given a set of data of points
(𝑥𝑥0,𝑦𝑦0), (𝑥𝑥1,𝑦𝑦1), … … . . , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) of a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) ,
where 𝑓𝑓(𝑥𝑥) is not known explicitly, it is required to
compute the value of the definite integral

 𝐼𝐼 = ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥 𝑏𝑏
𝑎𝑎 (1)

We derive a general formula for numerical
integration using Newton’s forward difference formula.
Let the interval [𝑎𝑎, 𝑏𝑏] be divided into n equal subintervals
such that

𝑎𝑎 = 𝑥𝑥0 < 𝑥𝑥1 … … … … … … … … . < 𝑥𝑥𝑛𝑛 = 𝑏𝑏

Clearly, 𝑥𝑥𝑛𝑛 = 𝑥𝑥0 + 𝑛𝑛 . Hence the integral
becomes 𝐼𝐼 = ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥0

Approximating 𝑦𝑦 by Newton’s forward difference formula, we obtain. [4]

 𝐼𝐼 = ∫ [𝑦𝑦0 + 𝑝𝑝∆𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)
2!

�∆2𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)(𝑝𝑝−2)
3!

�∆3𝑦𝑦0 + ⋯]𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛
𝑥𝑥0

Since 𝑥𝑥 = 𝑥𝑥0 + 𝑝𝑝ℎ, 𝑑𝑑𝑥𝑥 = ℎ 𝑑𝑑𝑝𝑝 and hence the above integral becomes

 𝐼𝐼 = ℎ ∫ [𝑦𝑦0 + 𝑝𝑝∆𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)
2!

�∆2𝑦𝑦0 + �𝑝𝑝(𝑝𝑝−1)(𝑝𝑝−2)
3!

�∆3𝑦𝑦0 + ⋯]𝑑𝑑𝑝𝑝𝑛𝑛
𝑜𝑜

 ⇒ ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛
𝑥𝑥0

= 𝑛𝑛ℎ[𝑦𝑦0 + �𝑛𝑛
2
�∆𝑦𝑦0 + �𝑛𝑛(2𝑛𝑛−3)

12
�∆2𝑦𝑦0 +⋯]𝑑𝑑𝑝𝑝

 (2)

From this general formula, we can obtain
different integration formula by putting 𝑛𝑛 = 1,2,3 … … …

etc.

Programming language C is very flexible and
powerful. It originally designed in the early 1970s [3]. It
allows us to maximum control with minimum command.
It

is recognized worldwide and used in a multitude of

applications especially in Numerical Analysis. Along with
other numerous benefits, we have used programming
language C in this paper.

Author α ρ Ѡ ¥: Department of Mathematics, Pabna University of
Science & Technology (PUST). e-mails: nl.nizhum@gmail.com,
 pust.pulok@gmail.com, bimaldu@gmail.com, rajpust09@gmail.com

Author σ: Department of EEE, University of Information Technology &
Sciences (UITS). e-mail: pr.aminul@gmail.com

Already B. K. Datta et all in [1] and [2] have
given the algorithms of numerical differentiation and
numerical integration. In this paper we have developed a
combined algorithm of numerical differentiation,
numerical integration and finding roots numerically.

The outline of this paper is as follows: Section 2
contains the brief description of the existing methods
with methodology. In Section 3, we develop an
algorithm, using the programming language C, which
gives us the solution of a problem simultaneously
regarding four popular existing numerical integration
methods namely Trapezoidal rule, Simpson’s 1/3

rule,

Simpson’s 3/8

rule and Weddle’s rule or the solution of

an ordinary differential equation simultaneously
regarding four popular existing methods namely Euler,
modified Euler, Runge-Kutta second and fourth order or

N

© 20 14 Global Journals Inc. (US)

G
lo
ba

l
J o

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
II

V
er
si
on

 I

43

Y
e
a
r

20
14

J

http://www.scholarpedia.org/article/Algorithm�

the solution of a problem simultaneously regarding two
existing numerical methods namely Bisection method
and False position method. Moreover, the simulator
identifies the method that gives the best solution
comparing with possible exact solution of the problem in
each case. Conclusions are given at the end at
Section 4.

II. Existing Methods

We give a brief description of the existing
methods of Numerical Integration like Trapezoidal rule,

Simpson’s 1/3 rule, Simpson’s 3/8 rule and Weddle’s
rule, methods of numerical differential equations like
Euler, modified Euler, Runge-Kutta second and fourth
order and numerical methods namely Bisection method
and False position method in this section with their
methodology[2].

a) Trapezoidal Rule

Putting 𝑛𝑛 = 1 in (2) all differences higher than
the first will become zero and we obtain

� 𝑦𝑦 𝑑𝑑𝑥𝑥

𝑥𝑥1

𝑥𝑥0

= ℎ �𝑦𝑦0 +
1
2∆𝑦𝑦0� = ℎ �𝑦𝑦0 +

1
2 (𝑦𝑦1 − 𝑦𝑦0)� =

ℎ
2 [𝑦𝑦0 + 𝑦𝑦1]

For the next interval [𝑥𝑥1,𝑥𝑥2] and others we have

the similar expression as ∫ 𝑦𝑦 𝑑𝑑𝑥𝑥𝑥𝑥2
𝑥𝑥1

= ℎ
2

[𝑦𝑦1 + 𝑦𝑦2] and so

on. And for the last interval [𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛] , we have

∫ 𝑦𝑦

𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1
= ℎ

2
[𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛].

Combining all these expressions, we obtain the rule

 ∫ 𝑦𝑦

𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥0
= ℎ

2
[𝑦𝑦0 + 2(𝑦𝑦1 + 𝑦𝑦2 + ⋯𝑦𝑦𝑛𝑛−1) + 𝑦𝑦𝑛𝑛]

This is known as Trapezoidal rule.

b) Simson’s 1/3 Rule Putting 𝑛𝑛 = 2

in (2) all differences higher than

the first will become zero and we obtain

� 𝑦𝑦

𝑑𝑑𝑥𝑥 = 2ℎ[𝑦𝑦0 +

∆𝑦𝑦0 +

1
6∆

2𝑦𝑦0]

𝑥𝑥2

𝑥𝑥0

=
ℎ
3 [𝑦𝑦2 + 4𝑦𝑦1 + 𝑦𝑦0]

Similarly, ∫ 𝑦𝑦

𝑑𝑑𝑥𝑥𝑥𝑥4

𝑥𝑥2
= ℎ

3
[𝑦𝑦2 + 4𝑦𝑦3 + 𝑦𝑦4]

and finally

∫ 𝑦𝑦

𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−2
= ℎ

3
[𝑦𝑦𝑛𝑛−2 + 4𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛]

 Combining all these expressions, we obtain

� 𝑦𝑦

𝑑𝑑𝑥𝑥

𝑥𝑥𝑛𝑛

𝑥𝑥0

=
ℎ
3 [𝑦𝑦0 + 4(𝑦𝑦1 + 𝑦𝑦3 +⋯+ 𝑦𝑦𝑛𝑛−1) + 2(𝑦𝑦2 + 𝑦𝑦4 + ⋯+

 . . . +𝑦𝑦𝑛𝑛−2) + 𝑦𝑦𝑛𝑛]

This is known as Simson’s 1/3

rule.

 c)

Simson’s 3/8 Rule

Putting 𝑛𝑛 = 3

in (2) all differences higher than the first will become zero and we obtain

 � 𝑦𝑦

𝑑𝑑𝑥𝑥

𝑥𝑥3

𝑥𝑥0

= 3ℎ[𝑦𝑦0 +
3
2∆𝑦𝑦0 +

9
12∆

2𝑦𝑦0 +
3

24∆
3𝑦𝑦0] =

3
8ℎ[𝑦𝑦0 + 3𝑦𝑦1 + 3𝑦𝑦2 + 𝑦𝑦3]

Similarly, ∫ 𝑦𝑦

𝑑𝑑𝑥𝑥𝑥𝑥6
𝑥𝑥3

= 3
8
ℎ[𝑦𝑦3 + 3𝑦𝑦4 + 3𝑦𝑦5 + 𝑦𝑦6]

and so on.

 Summing up all these, we obtain

 ∫ 𝑦𝑦

𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛

𝑥𝑥0
= 3

8
ℎ[𝑦𝑦0 + 3𝑦𝑦1 + 3𝑦𝑦2 + 2𝑦𝑦3 +⋯+ 2𝑦𝑦𝑛𝑛−3 + 3𝑦𝑦𝑛𝑛−2 + 3𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛]

[13]

 This rule is known as Simson’s 3/8 rule.

 d)

Weddle’s Rule

Putting 𝑛𝑛 = 6

in (2) all differences higher than the first will become zero and we obtain

� 𝑦𝑦

𝑑𝑑𝑥𝑥

𝑥𝑥6

𝑥𝑥0

=
3

10ℎ
[𝑦𝑦0 + 5𝑦𝑦1 + 𝑦𝑦2 + 6𝑦𝑦3 + 𝑦𝑦4 + 5𝑦𝑦5 + 𝑦𝑦6]

 Similarly, we obtain the general form

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

44

J

e
 X

IV

Is
su

e
V
II

V
e r

si
on

 I

� 𝑦𝑦 𝑑𝑑𝑥𝑥 =
3

10
ℎ[𝑦𝑦0 + 2(𝑦𝑦6 + 𝑦𝑦12 + ⋯⋯+ 𝑦𝑦𝑛𝑛−6) + 5(𝑦𝑦1 + 𝑦𝑦7 + ⋯⋯+ 𝑦𝑦𝑛𝑛−5) 5(𝑦𝑦5 + 𝑦𝑦11 +⋯⋯+ 𝑦𝑦𝑛𝑛−1)

𝑥𝑥𝑛𝑛

𝑥𝑥0
+ 6(𝑦𝑦3 + 𝑦𝑦9 + ⋯⋯+ 𝑦𝑦𝑛𝑛−3) + 𝑦𝑦2 + 𝑦𝑦4 +⋯⋯+ 𝑦𝑦𝑛𝑛]

This is known as Weddle’s rule.

An Algorithm for Integration, Differentiation and Finding Root Numerically

e)

Euler Method

In mathematics

and computational science, the
Euler method

is a first-order numerical

procedure for

solving ODEs with a given initial value. It is the most
basic explicit method

for numerical ODEs[1].

i.

Procedure
We consider the differential equation

 𝑦𝑦′ = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)

 (3)

with the initial condition

 𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0

 (4)

Suppose that we wish to solve the equation (3)
with (4) for the value of 𝑦𝑦

at 𝑥𝑥 = 𝑥𝑥𝑟𝑟 = 𝑥𝑥0 + 𝑟𝑟ℎ

(𝑟𝑟 =
1,2, … … … … . .)

Integrating (3) with 𝑦𝑦0

to 𝑦𝑦1

and𝑥𝑥0 to𝑥𝑥1 , we get

𝑦𝑦1 − 𝑦𝑦0 = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

Or, 𝑦𝑦1 = 𝑦𝑦0 + ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 (5)

Assuming that 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

in 𝑥𝑥0 ≤ 𝑥𝑥 ≤
𝑥𝑥1

, this gives Euler’s formula

 𝑦𝑦1 ≈ 𝑦𝑦0 + ℎ

𝑓𝑓(𝑥𝑥0,𝑦𝑦0)[since𝑥𝑥1 − 𝑥𝑥0 = ℎ] (6)

Similarly for the range 𝑥𝑥1 ≤ 𝑥𝑥 ≤ 𝑥𝑥2

, we have

𝑦𝑦2 = 𝑦𝑦1 + ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥2
𝑥𝑥1

Substituting 𝑓𝑓(𝑥𝑥1,𝑦𝑦1)

for 𝑓𝑓(𝑥𝑥, 𝑦𝑦)

where
𝑥𝑥1 ≤ 𝑥𝑥 ≤ 𝑥𝑥2

, we have

𝑦𝑦2 ≈ 𝑦𝑦1 + ℎ

𝑓𝑓(𝑥𝑥1,𝑦𝑦1)

[since𝑥𝑥2 − 𝑥𝑥1 = ℎ]

Proceeding in this way, we obtain the general formula

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ

𝑓𝑓(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛), 𝑛𝑛 = 0,1,2, … … … … …

f)

Modified Euler’s method

i.

Procedure

We consider the differential equation

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝑦𝑦)

 (7)

With the initial condition

𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0

 (8)

Suppose that we wish to solve the equation (7)
with (8) for the value of y at

𝑥𝑥 = 𝑥𝑥𝑟𝑟 = 𝑥𝑥0 + 𝑟𝑟ℎ

(𝑟𝑟 = 1,2, … … … … . .)

Integrating (7) with 𝑦𝑦0to 𝑦𝑦1

and 𝑥𝑥0to 𝑥𝑥1, we get

𝑦𝑦1 − 𝑦𝑦0 = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

Or,

𝑦𝑦1 = 𝑦𝑦0 + ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 (9)

Now integrating (9) by means of trapezoidal rule
to obtain

𝑦𝑦1 = 𝑦𝑦0 + �ℎ
2
� [𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1𝑦𝑦1)]

 (10)

We thus obtain the iterative formula

 𝑦𝑦1
(𝑛𝑛+1) = 𝑦𝑦0 + �ℎ

2
� [𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1,𝑦𝑦1

𝑛𝑛)] ;𝑛𝑛 = 0,1, 2 , .. (11)

Where 𝑦𝑦1
𝑛𝑛 is the nth approximation to 𝑦𝑦1 . The

iterative formula (11) can be started by choosing

𝑦𝑦1
0

from Euler’s formula

𝑦𝑦1
0 = 𝑦𝑦0 + ℎ

𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

g)

Runge-Kutta method(Second order)

i.

Procedure

We consider the differential equation 𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (12)

With the initial condition 𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0

 (13)

Suppose that we wish to solve the equation (12)
with (13) for the value of 𝑦𝑦

at

𝑥𝑥 = 𝑥𝑥𝑟𝑟 = 𝑥𝑥0 + 𝑟𝑟ℎ

(𝑟𝑟 = 1,2, … … … … . .)

Integrating (12) with 𝑦𝑦0to 𝑦𝑦1

and

𝑥𝑥0to 𝑥𝑥1, we get

𝑦𝑦1 − 𝑦𝑦0 = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

Or 𝑦𝑦1 = 𝑦𝑦0 + ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥1
𝑥𝑥0

 (14)

Now integrating (14) by means of trapezoidal
rule to obtain

𝑦𝑦1 = 𝑦𝑦0 + (ℎ
2
)[𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1𝑦𝑦1)]

(15)

Substitute 𝑦𝑦1 = 𝑦𝑦0 + ℎ

𝑓𝑓(𝑥𝑥0,𝑦𝑦0)on the right side
of equation (15), we obtain

 𝑦𝑦1 = 𝑦𝑦0 + �ℎ
2
� [𝑓𝑓0 + 𝑓𝑓(𝑥𝑥0 + ℎ,𝑦𝑦0 + ℎ

𝑓𝑓0)

(16)

Where 𝑓𝑓(𝑥𝑥0,𝑦𝑦0) = 𝑓𝑓0, 𝑥𝑥1 − 𝑥𝑥0 = ℎ

Now set 𝑘𝑘1 = ℎ

𝑓𝑓0and 𝑘𝑘2 = ℎ

𝑓𝑓(𝑥𝑥0 + ℎ,𝑦𝑦0 + 𝑘𝑘1).
And hence equation (16) becomes

𝑦𝑦1 = 𝑦𝑦0 + �1
2
� [𝑘𝑘1 + 𝑘𝑘2].

This is the Runge-Kutta second order formula.

h)

Runge-Kutta

method (Fourth order)

i.

Procedure

We mention the fourth order formulae defined
by

 𝑦𝑦1 = 𝑦𝑦0 +𝑊𝑊1𝑘𝑘1 +𝑊𝑊2𝑘𝑘2 + 𝑊𝑊3𝑘𝑘3 + 𝑊𝑊4𝑘𝑘4

 (17)

Where

𝑘𝑘1 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

𝑘𝑘2 = ℎ𝑓𝑓(𝑥𝑥0 + 𝛼𝛼0ℎ,𝑦𝑦0 + 𝛽𝛽0𝑘𝑘1)

𝑘𝑘3 = ℎ𝑓𝑓(𝑥𝑥0 + 𝛼𝛼1ℎ,𝑦𝑦0 + 𝛽𝛽1𝑘𝑘1 + 𝑣𝑣1𝑘𝑘2)

𝑘𝑘4 = ℎ𝑓𝑓(𝑥𝑥0 + 𝛼𝛼2ℎ,𝑦𝑦0 + 𝛽𝛽2𝑘𝑘1 + 𝑣𝑣2𝑘𝑘2 + 𝛿𝛿1𝑘𝑘3) (18)

Where the parameters have to be determined
by expanding both sides of (17) by Taylor’s series and
securing agreement of terms up to and including those
containing ℎ4. The choice of the parameters is, again
arbitrary and we have therefore several fourth order
Runge-kutta formulae. If for example we set

An Algorithm for Integration, Differentiation and Finding Root Numerically

© 20 14 Global Journals Inc. (US)

G
lo
ba

l
J o

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
II

V
er
si
on

 I

45

Y
e
a
r

20
14

J

http://en.wikipedia.org/wiki/Mathematics�
http://en.wikipedia.org/wiki/Computational_science�
http://en.wikipedia.org/wiki/Numerical_analysis�
http://en.wikipedia.org/wiki/Initial_value_problem�
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods�
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations�

𝛼𝛼0 = 𝛽𝛽0 = 𝛼𝛼1 = 1
2

,𝛼𝛼2 = 1

𝛽𝛽1 = 1
2
�√2− 1�,𝛽𝛽2 = 0

𝑣𝑣1 = 1 − 1
√2

, 𝑣𝑣2 = − 1
√2

,𝛿𝛿1 = 1 + 1
√2

𝑊𝑊1 = 𝑊𝑊4 = 1
6

,𝑊𝑊2 = 1
3
�1− 1

√2
� ,𝑊𝑊3 = 1

3
�1 + 1

√2
�

We obtain the method of Gill, whereas the choice

𝛼𝛼0 = 𝛼𝛼1 = 1
2

,𝛽𝛽0 = 𝑣𝑣1 = 1
2

𝛽𝛽1 =

𝛽𝛽2 = 𝑣𝑣2 = 0,𝛼𝛼2 = 𝛿𝛿1 = 1

𝑊𝑊1 = 𝑊𝑊4 = 1
6

,𝑊𝑊2 =

𝑊𝑊3 = 2
6

Leads to the fourth order Runge-Kutta formulae,
whereas

𝑘𝑘1 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0)

𝑘𝑘2 = ℎ𝑓𝑓 �𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦0 + 1

2
𝑘𝑘1�

𝑘𝑘3 = ℎ𝑓𝑓 �𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦0 + 1

2
𝑘𝑘2�

𝑘𝑘4 = ℎ𝑓𝑓(𝑥𝑥0 + ℎ, 𝑦𝑦0 + 𝑘𝑘3)

Then

𝑦𝑦1 = 𝑦𝑦0 +
1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)

i)

Bisection method

The

bisection method

in mathematics

is a root-
finding method

which repeatedly bisects an interval

and
then selects a subinterval in which a root

must lie for
further processing. It is a very simple and robust
method, but it is also relatively slow. Because of this, it is
often used to obtain a rough approximation to a solution
which is then used as a starting point for more rapidly
converging methods. The method is also called the
binary search method

or the dichotomy method[4].

i.

Procedure

The method is applicable when we wish to solve
the equation 0)(=xf

for

interval],[ba and

)(af the
real

variable ,x

where f is a

continuous function

defined on an and)(bf have opposite signs. In this
case a and b are said to bracket a root since, by the
intermediate value theorem, the f must have at least
one root in the interval),(ba . At each step the method
divides the interval in two by computing the midpoint

2/)(bac += of the interval and the value of the

function)(cf at that point. Unless c

is itself a root
(which is very unlikely, but possible) there are now two

possibilities: either)(af and)(cf have opposite signs

and bracket a root, or)(cf and)(bf have opposite
signs and bracket a root. The method selects the
subinterval that is a bracket as a new interval to be used

in the next step. In this way the interval that contains a
zero of f

is reduced in width by %50 at each step. The
process is continued until the interval is sufficiently
small.

Explicitly, if)(af and)(cf are opposite signs,

then the method sets c as the new value for b , and if
)(bf

and)(cf are opposite signs then the method

sets c as the new a . (If 0)(=cf then c may be taken
as the solution and the process stops.) In both cases,
the new)(af and)(bf

have opposite signs, so the
method is applicable to this smaller interval.

j)

False Position Method

In problems involving arithmetic

or algebra, the
false position method or regulafalsi

is used to refer to
basic trial and error

methods of solving problems by
substituting test values for the unknown quantities.

i.

Procedure

The poor convergence of the bisection method
as well as its poor adaptability to higher dimensions
(i.e., systems of two or more non-linear equations)
motivate the use of better techniques[6].

One such
method is the Method of False Position. Here, we start
with an initial interval],[21 xx and we assume that the

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

46

J

e
 X

IV

Is
su

e
V
II

V
e r

si
on

 I

function changes sign only once in this interval. Now we
find an 3x in this interval, which is given by the
intersection of the x axis and the straight line passing
through))(,(11 xfx and))(,(11 xfx . It is easy to verify
that 3x is given by

)()(
)()(

12

112
13 xfxf

xfxxxx
−

−
−=

Now, we choose the new interval from the two
choices],[31 xx or],[23 xx depending on in which
interval the function changes sign.

An Algorithm for Integration, Differentiation and Finding Root Numerically

http://en.wikipedia.org/wiki/Mathematics�
http://en.wikipedia.org/wiki/Root-finding_method�
http://en.wikipedia.org/wiki/Root-finding_method�
http://en.wikipedia.org/wiki/Interval_%28mathematics%29�
http://en.wikipedia.org/wiki/Root_of_a_function�
http://en.wikipedia.org/wiki/Real_number�
http://en.wikipedia.org/wiki/Continuous_function�
http://en.wikipedia.org/wiki/Intermediate_value_theorem�
http://en.wikipedia.org/wiki/Arithmetic�
http://en.wikipedia.org/wiki/Algebra�
http://en.wikipedia.org/wiki/Trial_and_error�

of the problem. In other words, finding 3x is a

static

procedure in the case of the bisection method since for
a given 1x and 2x , it gives identical

3x , no matter what
the function we wish to solve. On the other hand, the
false position method uses the information about the
function to arrive at 3x .

III.

Algorithm

INPUT: Type your choice C.

If C==1

{

INPUT: function 𝑓𝑓, limits 𝑥𝑥0

and 𝑥𝑥𝑛𝑛 , number of division 𝑛𝑛, direct result 𝑟𝑟.

Step-1: Compute ℎ = 𝑥𝑥𝑛𝑛−𝑥𝑥0
𝑛𝑛

Step-2: Set 𝑖𝑖 = 0

Step-3: While 𝑖𝑖 ≤ 𝑛𝑛, repeat Step- 4

Step-4: Set 𝑦𝑦[𝑖𝑖] = 𝑓𝑓(𝑥𝑥0 + 𝑖𝑖ℎ)

Step-5: Set 𝑖𝑖 = 1

Step-6: While 𝑖𝑖 < 𝑛𝑛, repeat Step-7
Step-7: Set 𝑠𝑠𝑠𝑠𝑠𝑠_1 = 𝑠𝑠𝑠𝑠𝑠𝑠_1 + 2𝑦𝑦[𝑖𝑖]

If 𝑖𝑖%2 = 0

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_2 = 𝑠𝑠𝑠𝑠𝑠𝑠_2 + 2𝑦𝑦[𝑖𝑖]

 Else

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_2 = 𝑠𝑠𝑠𝑠𝑠𝑠_2 + 4𝑦𝑦[𝑖𝑖]

 If 𝑖𝑖%3 = 0

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_3 = 𝑠𝑠𝑠𝑠𝑠𝑠_3 + 2𝑦𝑦[𝑖𝑖]

 Else

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_3 = 𝑠𝑠𝑠𝑠𝑠𝑠_3 + 3𝑦𝑦[𝑖𝑖]

 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1 = (ℎ/2) ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_1)
 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2 = (ℎ/3) ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_2)

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3 = (3ℎ/8) ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_3)
 If 𝑖𝑖%6 = 0

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 2𝑦𝑦[𝑖𝑖]

 Else if 𝑖𝑖%3 = 0

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 6𝑦𝑦[𝑖𝑖]

 Else

 Set 𝑠𝑠𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 𝑦𝑦[𝑖𝑖]
 Else If(𝑖𝑖%6 == 1||𝑖𝑖%6 == 5)

 𝑆𝑆𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 5𝑦𝑦[𝑖𝑖]
 Else

The false position method differs from the
bisection method only in the choice it makes for
subdividing the interval at each iteration. It converges
faster to the root because it is an algorithm which uses
appropriate weighting of the initial end points 1x and

2x using the information about the function, or the data

 𝑆𝑆𝑠𝑠𝑠𝑠_4 = 𝑠𝑠𝑠𝑠𝑠𝑠_4 + 𝑦𝑦[𝑖𝑖];

 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4 = �3ℎ
8
� ∗ (𝑦𝑦[0] + 𝑦𝑦[𝑛𝑛] + 𝑠𝑠𝑠𝑠𝑠𝑠_4)

Step-8: Set a= |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1− 𝑟𝑟|,𝑏𝑏 = |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2− 𝑟𝑟|, 𝑐𝑐 = |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3− 𝑟𝑟|, 𝑑𝑑 = |𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4− 𝑟𝑟|

If(𝑎𝑎 < 𝑏𝑏 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 < 𝑐𝑐)
If(𝑎𝑎 < 𝑑𝑑)
𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1

An Algorithm for Integration, Differentiation and Finding Root Numerically

© 20 14 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
II

V
er
si
on

 I

47

Y
e
a
r

20
14

J

 If(𝑏𝑏 < 𝑎𝑎

𝑎𝑎𝑛𝑛𝑑𝑑

𝑏𝑏 < 𝑐𝑐)

If(𝑏𝑏 < 𝑑𝑑)

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2

Else

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4
 If(𝑐𝑐 < 𝑎𝑎

𝑎𝑎𝑛𝑛𝑑𝑑

𝑐𝑐 < 𝑏𝑏)

If(𝑐𝑐 < 𝑑𝑑)

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3

Else

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4
OUTPUT:

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_1, 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_2, 𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_3 and t_𝑠𝑠𝑠𝑠𝑠𝑠_4 with message which sum is most accurate.

STOP.

}[2]

Else If C==2

{

INPUT: function 𝑓𝑓(𝑥𝑥,𝑦𝑦), initial condition (𝑥𝑥0,𝑦𝑦0), interval

ℎ, value of 𝑥𝑥, direct result 𝑟𝑟.

Step-1: Set n= (𝑥𝑥 − 𝑥𝑥0)/ℎ

,𝑦𝑦00 = 𝑦𝑦0,𝑦𝑦0𝑒𝑒 = 𝑦𝑦0,𝑦𝑦02 = 𝑦𝑦0

𝑦𝑦04 = 𝑦𝑦0,𝑦𝑦1 = 𝑦𝑦00 + ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦00)

Step-2: Set 𝑖𝑖 = 1

Step-3: While 𝑖𝑖 ≤ 𝑛𝑛, repeat Step-4 to step-7

Step-4: Set 𝑗𝑗 = 1

Step-5: While 𝑗𝑗 ≤ 𝑖𝑖

repeat step-10

Step-6: Set 𝑥𝑥1 = 𝑥𝑥0 + ℎ,𝑦𝑦10 = 𝑦𝑦00 + 1
2
ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝑓𝑓(𝑥𝑥1,𝑦𝑦1),𝑦𝑦1 = 𝑦𝑦10

Step-7: Set 𝑦𝑦1𝑒𝑒 = 𝑦𝑦0𝑒𝑒 + ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦0𝑒𝑒),𝑘𝑘11 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦04),𝑘𝑘22 = ℎ𝑓𝑓(𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦04 + 1

2
𝑘𝑘11)

 𝑘𝑘33 = ℎ𝑓𝑓 �𝑥𝑥0 + 1
2
ℎ, 𝑦𝑦04 + 1

2
𝑘𝑘22� , 𝑘𝑘44 = ℎ𝑓𝑓(𝑥𝑥0 + ℎ, 𝑦𝑦04 + 𝑘𝑘33)

 𝑟𝑟4 = 𝑦𝑦04 + (𝑘𝑘11 + 2𝑘𝑘22 + 2𝑘𝑘33 + 𝑘𝑘44)/6

 𝑘𝑘1 = ℎ𝑓𝑓(𝑥𝑥0,𝑦𝑦02),𝑘𝑘2 = ℎ𝑓𝑓(𝑥𝑥0 + ℎ,𝑦𝑦02 + 𝑘𝑘1)

 𝑦𝑦1𝑟𝑟2 = 𝑦𝑦02 +
1
2

(𝑘𝑘1 + 𝑘𝑘2), 𝑦𝑦0𝑒𝑒 = 𝑦𝑦1𝑒𝑒 ,𝑦𝑦00 = 𝑦𝑦10

 𝑦𝑦04 = 𝑦𝑦1𝑟𝑟4,𝑦𝑦02 = 𝑦𝑦1𝑟𝑟2, 𝑥𝑥0 = 𝑥𝑥𝑛𝑛

Step-8: Set

𝑎𝑎 = | 𝑦𝑦1𝑒𝑒 − 𝑟𝑟|,𝑏𝑏 = |𝑦𝑦10 − 𝑟𝑟|, 𝑐𝑐 = |𝑦𝑦1𝑟𝑟2 − 𝑟𝑟|,𝑑𝑑 = |𝑦𝑦1𝑟𝑟4 − 𝑟𝑟|

If(𝑎𝑎 < 𝑏𝑏

𝑎𝑎𝑛𝑛𝑑𝑑

𝑎𝑎 < 𝑐𝑐)

If(𝑎𝑎 < 𝑑𝑑)

𝑦𝑦1𝑒𝑒

Else

𝑦𝑦1𝑟𝑟4

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

48

J

e
 X

IV

Is
su

e
V
II

V
e r

si
on

 I

Else

𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠_4

If(𝑏𝑏 < 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑏𝑏 < 𝑐𝑐)
If(𝑏𝑏 < 𝑑𝑑)

𝑦𝑦10

Else

𝑦𝑦1𝑟𝑟4
If(𝑐𝑐 < 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 < 𝑏𝑏)

An Algorithm for Integration, Differentiation and Finding Root Numerically

Else

𝑦𝑦1𝑟𝑟4

Output: 𝑦𝑦1𝑒𝑒 ,𝑦𝑦10 ,𝑦𝑦1𝑟𝑟2

and 𝑦𝑦1𝑟𝑟4

with message which method gives best solution.

}[1]

Else

If C==3

{

INPUT: function f

end points ;,ba initial approximations ;, 10 pp

tolerance TOL, maximum number of iterations

N

direct result r .

Step-1: Set ;2=i

);(00 pfq =

).(11 pfq =

Step-2: While Ni ≤ do Steps 3-7.

Step-3: Set)/()(010111 qqppqpp −−−=

Step-4: If ≤− || 1pp

TOL then

 OUTPUT)(p ;

 STOP.

Step-5: Set ;1+= ii

).(pfq =

Step-6: If 0* 1 <qq

then set

 ;10 pp =

 .10 qq =

Step-7: Set pp =1 ;

 .1 qq =

Step-8: OUTPU (failure)

Step-9: Set ;1=i

).(afFA =

Step-10: While Ni ≤ do steps 11-14

Step-11: Set ;2/)(ababi −+=

).(bifFB =

Step-12: If FB=0 or <
−
2

ab

TOL then

If(𝑐𝑐 < 𝑑𝑑)
𝑦𝑦1𝑟𝑟2

 OUTPUT)(bi
 STOP.

Step-13: .1+= ii
Step-14: If 0* >FBFA then set bia = ;

An Algorithm for Integration, Differentiation and Finding Root Numerically

© 20 14 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
II

V
er
si
on

 I

49

Y
e
a
r

20
14

J

 FA=FB

 Else set bib =

Step-15: OUTPUT(failure)

Step-16: Set |||,| rbidrpc −=−=

 If (c<d) then

 P

Else

bi

OUTPUT: A message which root is most accurate between Bisection and False position method.

 STOP.

}
Else

STOP.

IV.

Conclusion

In this paper, we develop an algorithm

incorporated with Numerical Integration (Trapezoidal
rule, Simpson’s 1/3

rule, Simpson’s 3/8

rule and
Weddle’s rule.), Numerical Differentiation (Euler,
modified Euler and Runge-Kutta second and fourth
order) and finding Roots (Bisection method and False
position method) numerically. We observed that the
result obtained according to our procedure is
completely identical with the hand calculation and save
our time and labour. Moreover, Weddle’s rule gives the
best solution, the Runge-Kutta fourth order gives

the
best solution and

the False position method

gives the
best solution in Numerical Integration,

Numerical
Differentiation and finding Roots numerically
respectively.

References Références Referencias

1.

B. K. Datta, N. Rahman, & R. C. Bhowmik, A
Numerical

Simulator

for Solving

Ordinary Differential
Equations, IJSET, V-3,I-3,pp-250-252, 2014.

2.

B. K. Datta, N. Rahman, R. C. Bhowmik, U. Roy,
M.R.Kabir

& S.Paul,

A Numerical Simulator

for
Solving

Numerical Integration, IJSET, V-3, I-4,
pp-342-345, 2014.

3.

Wiki Answers, wiki.answer.com.5

4.

M. Goyal, Computer-based Numerical & Statistical
Techniques, Infinity Science Press LLC, New Delhi,
India, 2007.3.

5.

www.Scholarpedia.org.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

50

J

e
 X

IV

Is
su

e
V
II

V
e r

si
on

 I

6. A. Kaw, E.E. Kalu, Numerical Methods with
Applications, Lalu.com, 2008.

An Algorithm for Integration, Differentiation and Finding Root Numerically

http://www.scholarpedia.org/�

	An Algorithm for Integration, Differentiation and Finding Root Numerically
	Authors
	I. Introduction
	II. Existing Methods
	a) Trapezoidal Rule
	b) Simson’s 1/3 Rule
	c) Simson’s 3/8 Rule
	d) Weddle’s Rule
	e) Euler Method
	i.Procedure

	f) Modified Euler’s method
	i.Procedure

	g) Runge-Kutta method(Second order
	i.Procedure

	h) Runge-Kuttamethod (Fourth order)
	i.Procedure

	i) Bisection method
	i.Procedure

	j) False Position Method
	i.Procedure

	III. Algorithm
	IV. Conclusion
	References Références Referencias

