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Analytical Solution of a Guided Simply 
Supported Beam under Three Point Bending 

Shabbir Ahmed α & Mohammad Ikthair Hossain Soiket σ 

Abstract- In the present paper, elastic field parameters of a 
guided simply supported beam under three point bending has 
been investigated by a new approach called displacement 
potential formulation. Guided beams involve mixed mode of 
boundary conditions which the classical beam theory cannot 
handle. In displacement potential formulation, all the elastic 
field parameters has been expressed in terms of a single 
function Ψ which gives rise to a fourth order partial differential 
equation. The solution of this equation has been determined 
by trial and error process satisfying all the boundary 
conditions. This solution is then inserted to reduce the partial 
differential equation into an ordinary one. The obtained 
analytical solution of the beam has been presented as graphs. 
The stress concentration occurs mainly at the point of 
application of the load and the support at two corners. The 
analytical solution has further been verified by finite element 
analysis. 
Keywords: elastic field parameters, displacement 
potential formulation, mixed mode of boundary 
conditions, stress concentration, finite element analysis. 

I. Introduction 

beam may be considered as one of the most 
commonly used structural elements in 
engineering applications. A beam is said to be a 

deep beam when the depth is comparable to its span.  
Design of deep beams based on classical Euler 
bending theory can be seriously erroneous, since the 
simple theory of flexure takes no account of the effect of 
normal pressures on the top and bottom edges of the 
beam caused by the loads and reactions (Chow, 
Conway and Winter, 1952). The effect of normal 
pressures on the stress distribution in deep beams is 
such that the distribution of bending stresses on vertical 
sections is not linear and the distribution of shear 
stresses is not parabolic. Consequently, a plane 
transverse section does not remain plane after bending, 
and the neutral axis does not lie at the mid-depth, which 
eventually causes the basis of classical theory to be 
violated.  

In an attempt to make up the limitation, different 
theories as well as methods of solution have been 
reported in the literature  (Conway,  Chow  and  Morgan,  
1951; Conway and Ithaca, 1953; Murty, 1984; Suzuki, 
1986). 
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However, each solution possesses certain 
limitations, and eventually none of the solutions are 
found to conform to all the physical characteristics of the 
problem for deep beam appropriately. Even, 
photoelastic studies (Uddin, 1966), finite element 
analysis (Hardy and Pipelzadeh, 1991) and finite 
difference solutions (Ahmed, Idris and Uddin, 1966; 
Ahmed, Khan and Uddin, 1998; Ahmed, Idris and 
Uddin, 1999; Ahmed, Hossain and Uddin 2005; Akanda, 
Ahmed and Uddin, 2002) have also been carried out for 
deep beams on two supports, mainly because all the 
physical conditions imposed on the beam could not be 
fully taken into account in the analytical methods of 
solution. Among the existing mathematical models of 
elasticity for the plane boundary-value problems, the 
stress function approach and the displacement 
formulation are noticeable. The stress function approach 
accepts boundary conditions in terms of loading only; 
boundary restraints cannot be satisfactorily imposed on 
it. On the other hand, the displacement formulation 
involves extreme difficulty especially when the boundary 
conditions are a mixture of restraints and stresses. As a 
consequence, serious attempts had hardly been made 
in the past for stress analysis using this formulation. As 
such, neither of the existing formulations is suitable for 
solving problems of mixed boundary conditions.  

Further, the use of standard structures, like 
beams, columns, etc. with guides on part or full of their 
bounding surfaces is receiving increased importance in 
order to satisfy precise and strict design criteria in many 
of the engineering applications. Guided boundaries 
usually help in reducing the level of deformation in the 
structural elements, which eventually resist the change 
of the original shape of the bounding surfaces under 
loading. But structures with guided boundaries always 
remain away from the scope of analytical solutions, 
because the physical conditions of guided boundaries 
need to be mathematically modelled in terms of a mixed 
mode of boundary conditions.  

Since the exact analytical solution of mixed-
boundary-value elastic problems, is beyond the scope 
of existing mathematical models of elasticity, the use of 
a new mathematical formulation will be investigated to 
analyze the elastic behavior of a guided deep beam 
under three point bending loading and support 
arrangements. It would be worth mentioning that, as far 
as the reporting in the literature is concerned, the author 
has not come across any reliable study of the present 
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problem. Therefore, the analytical solution for a guided 
deep beam under three point bending is yet to be 
developed.

II. Boundary Conditions

The physical conditions at different boundaries 
of the beam are expressed mathematically as follows:

• ux = 0 at the edge of x = 0
• ux = 0 at the edge of x = L
• σxy (0,y) = 0 at the edge of x = 0
• σxy(L,y) = 0 at the edge of x = L
• σxy (0,y) = 0 at the edge of y = 0
• σxy (0,y) = 0 at the edge of y = D
• The lateral stress at the edge of y = D is related to 

the applied load for the three point bending. Since 
the point load is actually acting over a certain area 
of the beam, for instance it can be considered for 
the length of x=0.45L to 0.55L. Again it is 
considered that the load intensity is σo. Therefore,
the magnitude of point load, P= 0.1Lσo. Then for 
x=0.45L to 0.55L

• Similarly, the lateral stress at the edge of y = 0 is
related to the reactions at the support. In this case 
σyy (x,0) = σo/2 for x=0 to 0.1L and 0.9L to L.

Fig. 1 : Geometry and loading (symmetric)of the guided
simply supported beam under three point bending

Fig. 2 : Analytical model of the guided beam
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III. Analytical Solution

The equation of equilibrium for isotropic 
material is as follows (Timoshenko and Goodier, 1970):

                          
02 4
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(1)

The expressions of displacement and stress 
components in terms of function ψ(x, y) are as follows 
(Nath, Ahmed and Afsar, 2006):
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The potential function ψ(x, y) is first assumed in 
a way so that the physical conditions of the two 
opposing guided ends are automatically satisfied. At the 
same time solution has to satisfy the 4th order partial 
differential equation. After a long trial and error process, 
the solution of the governing equation (1) is thus 
approximated as follows:

            
3

1
cos)(),( yKxyYyx

m
m += ∑

∞

=

αψ
        

(3)

where, )(yfYm = , )L/m( π=α ,  K is an arbitrary 

constant and m= 1, 2, 3, …….. ∞ . 
Derivatives of equation (3) with respect to x

and y are substituted in Eq. (1) and following equation is 
obtained:

               Ym
////− 2α2Ym

// + α4Ym = 0                    (4)

The solution of the above 4th order ordinary 
differential equation with constant coefficients [Eq. (4)] 
can normally be approximated as follows: 

       
yr

m
yr

m
yr

m
yr

mm yeDeCyeBeAY 4321 +++=     (5)

But the ordinary differential equation (4) has the 
complementary function of repeated roots. Thus  

α== 21 rr ,  α−== 43 rr   and the general solution 

of Eq. (4) can be written as:

    ( ) ( ) y
mm

y
mmm eyDCeyBAY αα −+++=     (6)

where mA , mB , mC and mD are arbitrary constants.
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Now, the reactions on the bottom boundary                    
(y = 0) are acting over the two supports. It is considered 
that the supports are located at x=0 to 0.1L and x=0.9L 
to L respectively. The total length for reaction is 20 
percent of beam length. Now the compressive load 
exerted at the mid-span on the edge Dy = of the 
beam may be considered as acting over at least some 
length of the beam, for instance x= 0.45L to 0.55L. As a 
result the intensity of reaction is half of the load intensity. 
Therefore, the reactions over the beam at the supports 
can be taken as Fourier series in the following manner:

( ) xIIDx
m

myy ασσ cos,
1
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∞

=

+== For x= 0.45L to 0.55L
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The reaction load at the support on the edge 
0=y can also be given by a Fourier series as follows:

( ) xEEx
m

myy ασσ cos2/0,
1
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+== For x=0 to 0.1L and 

0.9L to L

Here
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Now substituting the derivatives of ψ and mY in the expressions for displacement and stresses following 

expressions are found:
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The loading considerations of equations (8a) 
and (9a) are to satisfy the boundary conditions at the 
bottom and top boundaries of the beam. Using 
boundary condition  ( ) 00, =xxyσ at the edge of 0=y , 

it is found that:
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Using boundary condition ( ) 2/0, 0σσ =xyy

at the edge of 0=y
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Therefore,
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and using Eq. (9a) and Eq. (12) the arbitrary constant K 
can be obtained as follows:
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The simultaneous equations (10), (11), (13) and 
(14) can be realized in a simplified matrix form for the 
solution of unknown terms like mA , mB , mC and 
as follows:
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where

( )αµ+= 1111 ZDD

112 2 ZDD µ=

( )αµ+= 1113 ZDD

114 2 ZDD µ−= , ( ) DeZFF ααµ+= 1111

( ){ } DeDZFF αµαµ 21112 ++=

( ) DeZFF ααµ −+= 1113

( ){ } DeDZFF αµαµ −−+= 21114

( )αµ+−= 1111 ZHH

( )µ+−−= 1112 ZHH

mD
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+−++ =



( )αµ+= 1113 ZHH  

( )µ+−−= 1114 ZHH  
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Therefore, stress and displacement 
components at various points of the beam can be 
obtained using equations of (7).

 

IV.
 

Result
 
Analysis

 

The analytical solutions of displacement and 
stress components are obtained for various aspect 
ratios (L/D) of the beam. The material of the beam is 
mild steel whose modulus of elasticity is E=209 X 10^9 
and poison’s ratio μ=0.3. The result of a guided 
isotropic beam  having aspect ratio two and the uniform 
loading parameter 0σ = 40 N/mm is presented in 
sequence of axial displacement (ux), lateral 
displacement (uy), bending stress (σxx), normal stress 
(σyy) and shearing stress (σxy). 
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: Axial Displacement along beam length
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Fig. 3(b) : Axial Displacement along beam depth 
 

Axial displacements (ux) are found to be zero at 
the mid-section of span and at the lateral guided 
boundaries. Zero value of ux at the guided ends verifies 
the boundary condition of those edges of the beam. 
Axial displacements distribution is found skew-
symmetric about the mid-span of the beam. The values 
of ux for sections 0<x/L< 0.5 are negative at the lower 
portion and positive at upper portion of the beam. The 
maximum magnitudes of ux/L= ±0.000158 are 
observed on bottom fiber at the sections of x/L = 0.1 
and x/L = 0.9 respectively. 

Lateral displacements (uy) are found to take 
positive value near the two guided lateral ends and 
negative in the region 0.25<x/L< 0.75 for L/D=2 The uy 
results are in confirmation to the physical condition of 
the beam. The beam is being pushed up at the corners 
and forced down at the mid-span region. The 
normalized values of positive and negative maximum 
lateral displacements are uy/D= 0.000250 and 
uy/D= - 0.000426 respectively for L/D=2. The maximum 
magnitude is observed on the topmost fiber at the mid-
span. 

L/D=2

Beam Length(x/L)
0.0 0.2 0.4 0.6 0.8 1.0

 (u
y/

D
) x

 1
04

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y/D=0.0
y/D=0.2
y/D=0.4
y/D=0.6
y/D=0.8
y/D=1.0

 

Fig. 4(a) : Lateral displacement along beam length 
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Fig. 4(b) : Lateral displacement along beam depth 
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: Bending stress along beam length
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Fig. 5 (b)

 

: Bending stress along beam depth

 

Bending stress distribution is observed non-
linear over the whole span. The stress (σxx) maximizes at 
the mid-span at top fiber of the beam where the point 
type load is acting. The next locations of bending stress 
concentration are the two bottom corners and the 
bottom fiber at mid-span of the beam. The maximum 
magnitude of normalized bending stress on the top fiber 
at mid-span is a 1.19.
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Fig. 6(a) : Lateral stress at beam length 

L/D=2

σyy/σο

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
Be

am
 d

ep
th

 (y
/ D

)
0.0

0.2

0.4

0.6

0.8

1.0

x/L=0.0
x/L=0.1
x/L=0.2
x/L=0.3
x/l=0.4
x/L=0.5

 

Fig.
 
6(b)

 
: Lateral stress at beam depth

 

Lateral stress (σyy) concentrations are observed 
at the topmost fiber of mid-span section and bottom two 
corners. It is understandable that each reaction is half of 
the load along beam length and the normalized value of 
the lateral stress varies from zero to about unity at the 
topmost layer in the loaded region and it is almost half 
at the bottom layer of the support region along beam 
depth, which confirms the physical condition of the 
problem.
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: Shear stress along beam length

 

© 2014  Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)

V
ol
um

  
  
 

  Y
e
a
r

20
14

24

J

     

e 
 X

IV
  

Is
su

e 
V
II
  

V
e r

si
on

 I
  

  
 

  

     

  
 

  

Analytical Solution of a Guided Simply Supported Beam under Three Point Bending



L/D=2

 

σxy/σο 

-0.20 -0.15 -0.10 -0.05 0.00

Be
am

 d
ep

th
 (y

/D
)

0.0

0.2

0.4

0.6

0.8

1.0

x/L=0.0
x/L=0.1
x/L=0.2
x/L=0.3
x/L=0.4
x/L=0.5

 Fig.
 
7(b) : Shear stress along beam depth

 All four edges and mid-span section of the 
guided simply supported beam are found free from 

shearing stress. The distribution of shearing stress (σxy) 
for point loading is anti-symmetric in two sides about the 
mid-span of the beam. The maximum concentration of 
shearing stress is observed near the bottom corners at 
the supports and is at the top edge where the 
termination of loading takes place. The normalized 
maximum magnitude of shear stress is ±0.2 for L/D= 2. 

Shear stress distribution at transverse section is nearly 

parabolic. Along beam depth maximum shear occurs at 
x/L=0.2 and normalized value of this shear stress is -
0.18.Shear stress is zero at x/L=0.4. 

As the aspect ratio increases, the magnitude of 
both axial and lateral displacement increases. The sharp 
changes in the curve become gradually smoother for 
higher aspect ratios.   

Fig. 8 : Comparison of axial and lateral displacement
 

V. Verification
 

Finite element analysis has also been carried out to verify the stress component of the beam. It can be 
observed that the stresses found out by the analytical solution, is in complete harmony to that of the finite element 
analysis. Hence the validity of the displacement potential formulation is justified.

 

Fig. 9 : Verification of displacement potential formulation by finite element method

 VI.

 

Conclusion 

Analytical solution using displacement potential 
approach for the elastic fields of a guided simply 

supported  beam of isotropic material under three point 
bending is explored satisfying all the physical conditions 
of the beam appropriately. The specialty of the guided 
ends is the mixed mode of boundary conditions. 
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Basically, the guided ends provide the freedom of lateral 
displacement but not the axial one. At this scenario the 
necessity of imposing boundary restraints is essential. 
But it is not practicable to use the classical Bernoulli-
Euler beam theory for the solution of guided beam. 
Because, it cannot handle mixed mode of boundary 
conditions. Displacement potential formulation can 
handle mixed mode of boundary condition appropriately 
and we have found the solution of the beam.

 

It is observed from the solution of the beam that

 

a)

 

Axial displacement is maximum at bottom fiber i.e. 

         

y/D=0.0.As the aspect ratio increases axial 
displacement also increases.

 

b)

 

Lateral displacement is maximum at top fiber i.e.

              

y/D=1.0. As the aspect ratio increases lateral 
displacement also increases. So if failure occurs it 
will occur at midsection of the beam i.e. where 
deflection is maximum.

 

c)

 

Maximum stress concentration occurs at midsection 
of the beam .So in terms of stress, midsection is 
more vulnerable to failure for a simply supported 
beam.

 

These findings will have applications in aircraft, 
spacecraft and vehicle structures for predicting 
appropriate stress distribution in them, thus allowing 
designers to design with

 

greater safety.
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