
Energy Efficient FMA for Embedded Multimedia Application1

Mandala Rakesh Raj1 and Ms S. Sujana22

1 VARDHAMAN COLLEGE OF ENGINEERING3

Received: 6 December 2013 Accepted: 2 January 2014 Published: 15 January 20144

5

Abstract6

This article presents energy efficient fused multiplyadd for multimedia applications. Low cost,7

low power and high performance factors diddle the design of many microprocessors directed to8

the low-power figuring market. The floating point unit occupies a significant percentage of the9

silicon area in a microprocessor due to its wide data bandwidth and the area occupied by the10

multiply array. The fused floating-point multiply-add unit is utilitarian for digital signal11

processing (DSP) applications such as fast Fourier transform (FFT) and discrete cosine12

transform (DCT). The proposed designs are implemented for single precision and synthesized13

with a 45-nm standard cell library. To improve the performance of the fused floating point14

multiply-add unit, we are supervening upon leading zero anticipation with the novel leading15

zero detection, as the novel leading one detection algorithm allowing us to significantly reduce16

the anticipation failure rates.17

18

Index terms— floating point, binary128, fused multiply add, simd, implementation, computer arithmetic.19

1 Introduction20

his paper presents energy efficient fused multiplyadd unit for multimedia applications. In this, floating point21
can be implemented by using different precisions. As we have SP (Single Precision), DP (Double Precision),22
QP (Quadruple Precision). IEEE Binary 32 which is pertained as single precision and binary64 referred to as23
double precision. Floating-point operations have both gained widespread popularity in versatile multimedia and24
scientific applications, resulting in modern processors patronize both the precisions. Due to accumulation errors25
in computations they are becoming deficient for today large-scale applications. This precision problem can be26
overcome by one promising approach that is by using the binary 128 which is referred to as quadruple precision27
or QP format. The accuracy and numerical stability of many applications can be improved by introducing28
this format and is already specified in the new IEEE-754-2008 standard. Another approach to which we have29
to improve the performance is using the fused multiply add (FMA) operation which yields one rounding error30
for two operations [3]. The first FMA is introduced in the year 1990 by IBM RS/6000 [6], [7]. After FMA is31
implemented by several companies like HP, MIPS, ARM and Intel.32

Many algorithms are developed on floating-point fused multiply add unit to decrease its latency [2], [4]. As we33
can say it is a key feature of the floating-point unit because it greatly increases the floating-point performance34
and accuracy since rounding is performed only once for the result.35

A Field Programmable Gate Array, FPGA provides a versatile and inexpensive way to implement and test36
VLSI designs. It is mostly used in low volume applications that cannot afford silicon fabrication or designs which37
require frequent changes or upgrades.38

In FPGA’s, the bottleneck for designing efficient floating-point units has mostly been area with advancement39
in FPGA architecture [3], there is a significant increase in FPGA densities so latency has been the main focus of40
attention in order to improve performance.41

The main contribution and objective of our work is to implement the architecture which is proposed by42
Lang/Bruguera but with little change to facilitate the implementation.43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

6 ARCHITECTURE

In reminder of this paper is organized as follows. Proposed FMA unit section 2 backgrounds, section 3 proposed44
methods and section 4 describes its general architecture. Section 5 provides the evaluation results and Section 645
concludes this paper.46

2 II.47

3 Background48

In this paper, the floating-point fused multiplyadd operation A x B + C is implemented for the IEEE floating-49
point format. In this format, a floating-point number X represents the valuep e s f X ? × × ? = ?) 150
(51

, Where s , f , ? ,e ,and p are integers with s being the sign bit; f the normalized mantissa; ? the radix, 2 for52
binary; e the biased exponent; and p the biased number.53

The fused multiply-add unit gets the input operands A, B, and C with valuesea a sa f A 2 . .) 1 (? = , eb b54
sb f B 2 . .) 1 (? = and ec c sc f C 2 . .) 1 (? =55

and performs the fused multiply-add operation:) 2 . .) 1 (2 . .) 1 ((ec c sc eb ea b a sb sa f f f rnd C B A56
? + ? = + × + ?57

Where the computed fused multiply-add result is rounded and normalized. The FMA architecture proposed58
before implemented in several floating-point ? Inorder to reduce the latency, the bit inversion and alignment of59
the significand of A is done in parallel with the multiplication [2]. The bit inversion provides the one’s implement60
of A for an effective subtraction.61

? The shift amount of the alignment depends on the value of d = E a -(E b + E c), where E a, E b , E c are62
the exponents of the A, B, and C operands, respectively.63

? When d ? 0 (i.e. E a > (E b + E c)), in a conventional alignment, B x C would have to be aligned with64
a right shift of d bits. vectors that are reduced together with the aligned A using 3:2 CSA, because the product65
has only 106 bits. The 55 most-significant bits will be sign extension bits, for theses 55 most significant bits,66
we use two multiplexers, one to select between A and inverted A as a sum vector and the second one to select67
between zeros and A as a carry vector by Xor-ing sign extension bits then the outputs of the two multiplexers68
are concatenated at the output of the CSA to obtain the 161-bit sum and carry words. c) The next step is the69
addition of the carry and sum words and the determination of the shift amount for normalization.70

? The carry and sum words, obtained at the output of the CSA, are added in a 161-bit one’s complement adder71
(with end around carry adjustment for effective subtraction). As the result can be negative, a complementer is72
required at the output of the adder.73

? In parallel with the significands addition, the normalization shift is determined. The LZA (Leading Zero74
Anticipator) [12] produces the amount of the shift directly from the operands. d) Once the result of the addition75
is obtained, the normalization shift can be performed since the shift amount has been already determined.76
A normalization shift is required to place the mostsignificant bit of the result at bit 0; as a consequence,77
normalization is performed to compensate for the cancellation produced in subtraction as well as to compensate78
for the way the alignment is performed. With this scheme, the delay of the FMA operation is determined79
by the sum of the delays of the following components: multiplier, 3-2 CSA, 161-bit adder plus complementer,80
normalization, and rounding. On the other hand, the main hardware components are: multiplier, alignment81
shifter, 3:2 CSA, LZA, 161-bit adder, normalization shifter, and rounder.82

4 III.83

5 Proposed Architecture84

We now describe the proposed FMA architecture. Since the unit is quite complex, we present this description in a85
single step. In this section, we give an overview of the scheme, with just enough detail to make it understandable86
and believable. Here we use Fig. 2 to illustrate the description.87

The objective of the proposed FMA architecture is to reduce the overall delay, and Power. Since, in floating-88
point addition and multiplication, one of the approaches to reduce latency has been to combine addition with89
rounding [5], [10], [12], [13], we follow the same approach. For this approach, in floating-point addition and90
multiplication, the order of normalization and rounding is interchanged. This seems impractical to do for FMA91
because, before the normalization, the rounding position is not known. The solution we explore is to perform92
the normalization before the addition.93

6 Architecture94

To improve the performance of the fused floating point multiply-add unit, we are supervening upon leading zero95
anticipation with the novel leading zero detection, as the novel leading one detection algorithm allowing us to96
significantly reduce the anticipation failure rates. The proposed leading digit is worked using tree structure,97
where inputs of n bits are divided into n/2 pairs of bits.98

For each pair of bits a two bit count is generated and another counter is triggered to calculate the depth of99
the tree. For example a four digit can be paired into two pairs and a counter is used to find the one/ zero in pair100

2

i and i+1 and the second counter is used to find the value of required bit in which pair and at which level. This101
method is continued of log 2 (n) levels.102

To boost this tree structure we use a structure method which speed’s up by a 4 bit or even 8bit to reduce the103
hierarchy of the tree structure.104

7 IV.105

Detailed Description of some Modules of the Architecture a) 3:2 CSA The multiplier produce 106-bit sum and106
carry vector that are reduced together with the aligned A using 3:2 CSA. Although the output of the multiplier107
must be positive number because we multiply two positive numbers (sign and magnitude representation), one of108
the two output vectors of the multiplier may be negative because of using booth algorithm which use negative109
sets {-1,-2} which convert a positive number with sign and magnitude representation to a negative number with110
two’s complement representation. The addition of sum and carry vectors must be a positive number but one of111
them, not both, may be negative.112

Instead of using 161-bit CSA, only the 106 leastsignificant bits of the aligned A are needed as input to the113
3:2 CSA, because the product of sum and carry vectors has only 106 bits and The 55 most-significant bits will114
be sign extension bits which have two cases {0, 0} if both sum and carry vectors are positive or {0, 1} if one of115
them is negative. For the 55 mostsignificant bits, we use two multiplexers, one to select between A and inverted116
A as a sum vector and the second one to select between zeros and A as a carry vector by Xor-ing sign extension117
bits then the outputs of the two multiplexers are concatenated at the output of the CSA to obtain the 161-bit118
sum and carry words.119

8 b) Leading zero Anticipator120

The leading zero anticipator (LZA) has two main parts: the encoding of the leading-one position i.e. detection121
module and the correction of this position i.e. correction module. The detection module are divided into two122
parts the first one is called LZA and it determines the number of leading zeros i.e. the position of the leading one.123
By producing a string of zeros and ones where the position of the most significant 1 is the Year 2014 J position124
of the leading one. The second part, called leading zero detectors (LZD), counts the number of zero digits from125
the left-most position until the first nonzero digit is reached i.e. leading one position. Since the detection is done126
from most significant bit to least significant bit regardless of the carry that may come from the least significant127
bit, the detection of leading one position may be off by one bit. The LZA logic takes two input strings and uses128
a set of logical equations given below.129

After LZA logic LZD is used to drive the normalization shifter [11] by encoding the position of leading one to130
its weighted binary representation.0), . . () . . (1 1 1 1 1 1 > + ? + × = + + + + + + i g g z z t g z z g t f i131
i i i i i i i i i i 1 0 0 .t t f = Where i i i b a t ? = i i i b a g . = i i i b a z . =132

The LZD unit assumes n bits as input and produces log 2 n bits of the leading one position Pattern Position133
Valid The IEEE 754 binary floating-point standard defines a set of normalized numbers and four sets of special134
numbers. Of the four types of special numbers, three do not require computation for arithmetic operations.135
These include Not-a-Numbers (NaN), infinities, and zeros. De-normalized numbers, also known as subnormal or136
denormals are the fourth type of special number and do require computation.137

Normalized numbers can be described by the following:bias xe xs f X ? × × × ? = 2 1) 1 (138
Where X is the value of the normalized number, X s is the sign bit, X f is the fractional part of the significand,139

Xe is the exponent, and bias is the bias of the format which corresponds to 127, 1,023, and 16,383, for single,140
double, and quad, respectively. Denormalized numbers can be described by the following:0 , 2 0) 1 (1 ? × =141
× × × ? = ? f i X f X e bias xs142

The denormal format differs from a normal number in that there is no implied bit and the exponent is not143
equal to X e -bias, but , instead, is forced up by 1 to E min , which is equal to -126, -1,022, and -16,382, depending144
on the format.145

Using the results from the LZD, the result from the adder is shifted left to normalize the result. That means146
now the first bit is 1.147

The normalize is mostly a large shifter. The shifter has more than one stage. The stages are organized from148
the coarsest to the finest. The last stage performs a shift by one or two due to correction signal. This should149
have a negligible effect on the delay of the last stage.150

9 d) Rounding151

The IEEE 754 floating-point standard has been widely adopted since its introduction in 1985. The standard152
requires that all arithmetic operations are rounded so as to maintain as high a degree of accuracy and uniformity153
across different computing platforms as possible. The rounding decision is taken by knowing also sticky and round154
bits. The sticky bit is calculated from the result by OR-ing all least significant bits after the round bit. Rounding155
operations were originally viewed as a final separate step in most arithmetic circuit implementations. This has156
been merged with the carrypropagate addition in floating-point adders by delaying normalization until after157
rounding. Four different rounding modes are laid down by the IEEE floating-point standard [8], [9]: rounding158
toward 0, rounding to nearest (even), and rounding to ± . Rounding to nearest (even) is the standard’s default159

3

12 CONCLUTIONS

mode; rounding toward zero is helpful in many DSP applications; and rounding to ± is used in interval arithmetic,160
which affords bounds to be specified on the accuracy of a number.161

10 J e XIV Issue VI Version162

I V. Simulations Results163

11 b) Power164

The power is the important aspect of the any architecture as the power decreases the power consumption of165
the entire processor decreases. In this project the power of the both proposed and the previous architecture166
are calculated using Cadence RC complier in different TSMC standard libraries. The proposed architecture is167
efficient in terms of power.168

12 Conclutions169

Architecture for a floating-point Multiply-Add-Fused (FMA) unit that reduces the latency of the traditional170
FMA units has been proposed. The proposed FMA is based on the combination of the final addition and171
the rounding, by using proposed LZD. This novel leading one detection algorithm allowing us to significantly172
reduce the anticipation failure rates. We embedded the proposed technique in Fused floating point multiply and173
Accumulation unit and its silicon area and performance with other existing solution. This approach has been174
used previously to reduce the latency of the floating-point addition and multiplication. However, it can be used175
only if the normalization is performed after the rounding and this is not possible for the FMA operation because176
the rounding position is not known until the normalization has been performed. To overcome this difficulty, we177
propose that the normalization be carried out before the addition. This required a careful design of some other178
parts of the FMA, the leading-zeros-detector (LZD). 1

2014

Figure 1: T © 2014
179

1© 2014 Global Journals Inc. (US)

4

1

Figure 2: Fig. 1 :

5

12 CONCLUTIONS

Figure 3: Je

6

2

Figure 4: Fig. 2 :

Figure 5:

3

Figure 6: Fig. 3 :

7

12 CONCLUTIONS

456

Figure 7: Fig. 4 :Fig. 5 :Fig. 6 :

II

Methods Area Power
Using-nm (µm²) (mW)
Existing 87,908 19
Method(90nm)
Proposed 6,984 6.35
Method (45nm)
VI.

Figure 8: Table II :

8

[Computers (2004)] , Computers Aug. 2004. 53 (8) p. .180

[Even and Seidel (2000)] ‘A Comparison of Three Rounding Algorithms for IEEE Floating-Point Multiplication’.181
G Even , P M Seidel . IEEE. Trans. Computers July 2000. 49 (7) p. .182

[Hinds ()] ‘An Enhanced Floating Point Coprocessor for Embedded Signal Processing and Graphics Applications’.183
C Hinds . Proc. 33rd Asilomar Conf. Signals, Systems, and Computers, (33rd Asilomar Conf. Signals, Systems,184
and Computers) 1999. p. .185

[Chen and Cheng ()] ‘Architectural Design of a Fast Floating-Point Multiplication-Add Fused Unit Using Signed-186
Digit Addition’. L Chen , J Cheng . Proc. Euromicro Symp. Digital Systems Design, (Euromicro Symp. Digital187
Systems Design) 2001. p. 346.188

[Yeh (1999)] Fast method of floating point multiplication and accumulation, H Yeh . February 1999.189

[Montoye (1990)] Floating Point Unit for Calculating A=XY+Z Having Simultaneous Multiply and Add, E190
Montoye . November 1990. (United States patent)191

[Lang and Bruguera (2004)] ‘Floating-Point Fused Multiply-Add with Reduced Latency’. T Lang , J Bruguera .192
IEEE Transactions on Computers August 2004. 53 (8) p. .193

[Lang and Bruguera] ‘Floating-Point Multiply-Add-Fused with Reduced Latency’. T Lang , J D Bruguera . IEEE194
Trans195

[Seidel and Even ()] ‘How Many Logic Levels Does Floating-Point Addition Require?’. P M Seidel , G Even .196
Proc. Int’l Conf. Computer Design (ICCD 98), (Int’l Conf. Computer Design (ICCD 98)) 1998. p. .197

[Schmookler and Nowka (2001)] ‘Leading Zero Anticipation and Detection –A Comparison of Methods’. M198
Schmookler , K Nowka . Proceedings of the 15th IEEE Symposium on Computer Arithmetic, (the 15th199
IEEE Symposium on Computer ArithmeticVail, Colorado) June 2001. p. .200

[Santoro et al. ()] ‘Rounding Algorithms for IEEE Multipliers’. M R Santoro , G Bewick , M A Horowitz . Proc.201
IEEE Ninth Symp. Computer Arithmetic, (IEEE Ninth Symp. Computer Arithmetic) 1989. p. .202

[Santoro et al. (1989)] ‘Rounding Algorithms for IEEE Multipliers’. M Santoro , G Bewick , M A Horowitz .203
Proceedings of the 9th IEEE Symposium on Computer Arithmetic, (the 9th IEEE Symposium on Computer204
ArithmeticSanta Monica, California, USA) September 1989. p. .205

[Montoye et al. (1990)] ‘Second -Generation RISC Floating Point with Multiply-Add Fused’. R Montoye , E206
Hokenek , S Runyon . IEEE journal of solid-state circuits October 1990. 25 (5) p. .207

[Oberman et al. ()] ‘The SNAP Project: Design of Floating-Point Arithmetic Units’. S F Oberman , H Al-Twaijry208
, M J Flynn . Proc. IEEE 13th Symp. Computer Arithmetic, (IEEE 13th Symp. Computer Arithmetic) 1997.209
p. .210

9

	1 Introduction
	2 II.
	3 Background
	4 III.
	5 Proposed Architecture
	6 Architecture
	7 IV.
	8 b) Leading zero Anticipator
	9 d) Rounding
	10 J e XIV Issue VI Version
	11 b) Power
	12 Conclutions

