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Energy Efficient FMA for Embedded Multimedia 
Application 

Mandala Rakesh Raj α & Ms S. Sujana σ 

Abstract- This article presents energy efficient fused multiply-
add for multimedia applications. Low cost, low power and high 
performance factors diddle the design of many 
microprocessors directed to the low-power figuring market. 
The floating point unit occupies a significant percentage of the 
silicon area in a microprocessor due to its wide data 
bandwidth and the area occupied by the multiply array. The 
fused floating-point multiply-add unit is utilitarian for digital 
signal processing (DSP) applications such as fast Fourier 
transform (FFT) and discrete cosine transform (DCT). The 
proposed designs are implemented for single precision and 
synthesized with a 45-nm standard cell library. To improve the 
performance of the fused floating point multiply-add unit, we 
are supervening upon leading zero anticipation with the novel 
leading zero detection, as the novel leading one detection 
algorithm allowing us to significantly reduce the anticipation 
failure rates.  
Keywords: floating point, binary128, fused multiply add, 
simd, implementation, computer arithmetic. 

I. Introduction 

his paper presents energy efficient fused multiply- 
add unit for multimedia applications. In this, 
floating point can be implemented by using 

different precisions. As we have SP (Single Precision), 
DP (Double Precision), QP (Quadruple Precision). IEEE 
Binary 32 which is pertained as single precision and 
binary64 referred to as double precision. Floating-point 
operations have both gained widespread popularity in 
versatile multimedia and scientific applications, resulting 
in modern processors patronize both the precisions. 
Due to accumulation errors in computations they are 
becoming deficient for today large-scale applications. 
This precision problem can be overcome by one 
promising approach that is by using the binary 128 
which is referred to as quadruple precision or QP 
format. The accuracy and numerical stability of many 
applications can be improved by introducing this format 
and is already specified in the new IEEE-754-2008 
standard. Another approach to which we have to 
improve the performance is using the fused multiply add 
(FMA) operation which yields one rounding error for two 
operations [3]. The first FMA is introduced in the year 
1990 by IBM RS/6000 [6], [7]. After FMA is implemented 
by  several  companies  like  HP,  MIPS,  ARM  and  Intel.  
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Many algorithms are developed on floating-point fused 
multiply add unit to decrease its latency [2], [4]. As we 
can say it is a key feature of the floating-point unit 
because it greatly increases the floating-point 
performance and accuracy since rounding is performed 
only once for the result. 

A Field Programmable Gate Array, FPGA 
provides a versatile and inexpensive way to implement 
and test VLSI designs. It is mostly used in low volume 
applications that cannot afford silicon fabrication or 
designs which require frequent changes or upgrades. 

In FPGA’s, the bottleneck for designing efficient 
floating-point units has mostly been area with 
advancement in FPGA architecture [3], there is a 
significant increase in FPGA densities so latency has 
been the main focus of attention in order to improve 
performance. 

The main contribution and objective of our work 
is to implement the architecture which is proposed by 
Lang/Bruguera but with little change to facilitate the 
implementation. 

In reminder of this paper is organized as 
follows. Proposed FMA unit section 2 backgrounds, 
section 3 proposed methods and section 4 describes its 
general architecture. Section 5 provides the evaluation 
results and Section 6 concludes this paper. 

II. Background 

In this paper, the floating-point fused multiply-
add operation A x B + C is implemented for the IEEE 
floating- point format. In this format, a floating-point 
number X represents the value pes fX −××−= β)1( , 
Where s , f , β ,e ,and p are integers with  s being the 
sign bit; f  the normalized mantissa;  β  the radix, 2 for 
binary; e the biased exponent; and  p the biased 
number.  

The fused multiply-add unit gets the input 
operands A, B, and C with values ea

a
sa fA 2..)1(−= , 

eb
b

sb fB 2..)1(−=
 
and

 

ec
c

sc fC 2..)1(−=
 
and performs the 

fused multiply- add operation:
 

)2..)1(2..)1(( ec
c

scebea
ba

sbsa fffrndCBA −+−=+× +⊕

 Where the computed fused multiply- add result 
is rounded and normalized. The FMA architecture 
proposed before implemented in several floating-point 
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units of general-purpose processors is shown in Fig. 1. 
The steps in this implementation are:



 
a)

 

Multiplication and alignment shift

 
•

 

Acquiring an intermediate carry-save product by 
multiplication of B and C.

 
•

 

Inorder to reduce the latency, the bit inversion and 
alignment of the significand of A is done in parallel 
with the multiplication

 

[2]. The bit inversion provides 
the one’s implement of A for an effective 
subtraction.

 
•

 

The shift amount of

 

the alignment depends on the 
value of d = Ea – (Eb

 

+ Ec), where Ea, Eb, Ec

 

are the 
exponents of the A, B, and C operands, 
respectively.

 
•

 

When d ≥ 0 (i.e. Ea > (Eb + Ec)), in a conventional 
alignment, B x C would

 

have to be aligned with a 
right shift of d bits.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            

 
 
 
 
 Fig. 1 :

 

Basic architecture of FMA unit

 •

 
Instead, shift the addend A to the left to

 

perform the 
alignment

 

parallel with the multiplication. For double 
precision format the maximum left alignment shift 
would be 56 bits. When d ≥ 56, CB×

 

is placed to 
the right of the least significant bit of A; in this case, 
B x C affects only the calculation

 

of the sticky bit. 
Maximum

 

left shift is obtained by observing that the 
guard (position 53) and the round (position 54) bits 
are 0 when the result signific

 

and corresponding to 
the addend. Consequently

 

two additional

 

positions 
are included, resulting in the shift of 56 positions. 
When d < 0, the addend A would have to be 
aligned with a right shift of d bits. In this case the 
maximum alignment shift would be 105 bits for

 

double precision formats. 

•

 

For shift amount larger than 105, d < -105, the 
operand A is placed to the right of the

 

least- 
significant bit of CB× , affecting only the calculation 
of the sticky bit.

 
•

 

To avoid bidirectional shifter the alignment is 
implemented as a right shift by placing the addend 
A to the left of the most significant bit of the product 
B x C by 56 bits. Two extra bits are placed between 
the addend A and

 

the product CB×

 

to allow 
correct rounding when A is not shifted. For d ≥ 0 
with this implementation, A is right shifted (56- d) 
bits; then, the shift amount is shift amount = max 
{0, 56 – d}.

 
•

 

For d < 0, A is right shifted 56-d bits, then shift 
amount =

 

min {161, 56 – d}.

 

By

 

combining both 
cases, the

 

shift amount is in the range [0:161], 
requiring a 161-bit right shifter. Moreover, the shift 
amount is computed as shift amount = 56-d.

 
b)

 

The multiplier produce 106-bit sum and carry 
vectors that are reduced together with the

 

aligned A 
using 3:2 CSA, because the product has only 106 
bits. The 55 most-significant bits will be sign 
extension bits, for theses 55 most significant bits, 
we use two multiplexers, one to select between A 
and inverted A as a sum vector and the second one 
to select between zeros and A as a carry vector by 
Xor-ing sign extension bits then the outputs of the 
two multiplexers are concatenated at the output of 
the CSA to obtain the 161-bit sum and carry words.

 
c)

 

The next step is the addition of the carry and sum 
words and the determination of the shift amount for 
normalization.

 
•

 

The carry and sum words, obtained at the output of 
the CSA, are added in a 161-bit one’s complement 
adder (with end around carry adjustment for 
effective subtraction). As the

 

result

 

can be negative, 
a complementer is required at the output of the 
adder.

 
•

 

In parallel with the significands addition, the 
normalization shift is determined. The LZA (Leading 
Zero Anticipator) [12] produces the amount of the 
shift directly from the operands.

 
d)

 

Once the result of the addition is obtained, the 
normalization shift can be performed since the shift 
amount has been already determined. A 
normalization shift is required to place the most- 
significant bit of the result at bit 0; as a 
consequence, normalization is performed to 
compensate for the cancellation produced in 
subtraction as well as to compensate for the way 
the alignment is performed.
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e) The last step is the rounding of the result
With this scheme, the delay of the FMA 

operation is determined by the sum of the delays of the 



  following components: multiplier, 3-2 CSA, 161-bit adder 
plus complementer, normalization, and rounding. On the 
other hand, the main hardware components are: 
multiplier, alignment shifter, 3:2 CSA, LZA, 161-bit 
adder, normalization shifter, and rounder. 

III.

 

Proposed

 

Architecture

 

We now describe the proposed FMA 
architecture. Since the unit is quite complex, we present 
this description in a single step. In this section, we give 
an overview of the scheme, with just enough detail to 
make it understandable and believable. Here we 

                

use Fig. 2 to illustrate the description.

 

The objective of the proposed FMA architecture 
is to reduce the overall delay, and Power. Since, in 
floating-point addition and multiplication, one of the 
approaches to reduce latency has been to combine 
addition with rounding [5], [10], [12], [13], we follow the 
same approach. For this approach, in floating-point 
addition and multiplication, the order of normalization 
and rounding is interchanged. This seems impractical to 
do for FMA because, before the normalization, the 
rounding position is not known. The solution we explore 
is to perform the normalization before the addition.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 :

 

Block diagram of the proposed FMA       
Architecture

 

 

To improve the performance of the fused 
floating point multiply-add unit, we are supervening 
upon leading zero anticipation with the novel leading 
zero detection, as the novel leading one detection 
algorithm allowing us to significantly reduce the 

anticipation failure rates. The proposed leading digit is 
worked using tree structure, where inputs of n bits are 
divided into n/2 pairs of bits. 

For each pair of bits a two bit count is 
generated and another counter is triggered to

 

calculate 
the depth of the tree. For example a four digit can be 
paired into two pairs and a counter is used to find the 
one/ zero in pair i and i+1 and the second counter is 
used to find the value of required bit in which pair and at 
which level. This method is continued of log2

 

(n) levels. 
To boost this tree structure we use a structure method 
which speed’s up by a 4 bit or even 8bit to reduce the 
hierarchy of the tree structure.

 

IV.

 

Detailed

 

Description

 

of some

 

Modules of the

 

Architecture

 

a)

 

3:2

 

CSA

 

The multiplier produce 106-bit sum and carry 
vector that are reduced together with the aligned A 
using 3:2 CSA. Although the output of the multiplier 
must be positive number because we multiply two 
positive numbers (sign and magnitude representation), 
one of the two output vectors of the multiplier may be 
negative because of using booth algorithm which use 
negative sets {-1,-2} which convert a positive number 
with sign and magnitude representation to a negative 
number with two’s complement

 

representation. The 
addition of sum and carry vectors must be a positive 
number but one of them, not both,

 

may be negative.

 

Instead of using 161-bit CSA, only the 106 least-
significant bits of the aligned A are needed as input to 
the 3:2 CSA, because the product of sum and

 

carry 
vectors has only 106 bits and The 55 most-significant 
bits will be sign extension bits which have two cases 

              

{0, 0} if both sum and carry vectors are positive or 

                

{0, 1} if one of them is negative. For the 55 most-
significant bits, we

 

use two multiplexers, one to select 
between A and inverted A as a sum vector and the 
second one to select between zeros and A as a carry 
vector by Xor-ing sign extension bits then the outputs of 
the two multiplexers are concatenated at the output of 
the CSA to obtain the 161-bit sum and carry words.

 

b)

 

Leading zero Anticipator

 

The leading zero anticipator (LZA) has two main 
parts: the encoding of the leading-one position i.e. 
detection module and the correction of this position i.e. 
correction module. The detection module

 

are divided 
into two parts the first one is called LZA and it 
determines the number of leading zeros i.e. the position 
of the leading one. By producing a string of zeros and 
ones where the position of the most significant 1 is the 
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position of the leading one. The second part, called 
leading zero detectors (LZD), counts the number of zero 
digits from the left-most position until the first nonzero 
digit is reached i.e. leading one position. Since the 
detection is done from most significant bit to least 



 
significant bit regardless of the carry that may come 
from the least significant bit, the detection of leading 
one position may be off by one bit.

 

The LZA logic takes 
two input strings and uses a set of logical equations 
given below.

 

After LZA logic LZD is used

 

to drive the 
normalization shifter [11] by encoding the position of 
leading one to its weighted binary representation.

 

0),..()..( 111111 >+⊕+×= ++++++ iggzztgzzgtf iiiiiiiiiii

              100 .ttf =

 

Where  iii bat ⊕=

 

  iii bag .=

 

  
iii baz .=

 

The LZD unit assumes n bits as input and 
produces log2

 

n bits of the leading one position 

 
 

Pattern

 

Position

 

Valid

 

1x

 

0 Yes

 

01

 

1 Yes

 

00

 

X No

 

 

Table (I)

 

shows the truth table of 2-bits LZD. By 
using two 2-bits LZD’s we can get 4-bit LZD is shown in 
Figure (a). Following the same concept we can get LZD 
with higher number of output using hierarchical 
structure.  

 

     

 
 
 
 
 
 
 
 

        

 
 
 
 
 
 

Fig. 3 :

 

Using 2-input LZD

 

c)

 

Normalization 

 

The IEEE 754 binary floating-point standard 
defines a set of normalized numbers and four sets of 
special numbers. Of the four types of special numbers, 
three do not require computation for arithmetic 
operations. These include Not-a-Numbers (NaN), 
infinities, and zeros. De-normalized numbers, also 
known as subnormal or denormals are the fourth type of 
special number and do require computation.

 

Normalized numbers can be described by the 
following:  

biasxexs fX −×××−= 21)1(

 

Where X is the value of the normalized number, 
Xs   is the sign bit, Xf is

 

the fractional part of the 
significand, Xe

 

is

 

the exponent, and bias is the bias of 
the format which corresponds to 127, 1,023, and 
16,383, for single, double, and quad, respectively.

 

Denormalized numbers can be described by 
the following:

 

0,20)1( 1 ≠×=×××−= − fiXfX e
biasxs

 

The denormal format differs from a normal 
number in that there is no implied bit and the exponent 
is not equal to Xe – bias, but , instead, is forced up by 1 
to Emin, which is equal to -126, -1,022, and -16,382, 
depending on the format.

 

Using the results from the LZD, the result from 
the adder is shifted left to normalize the result. That 
means now the first bit is 1. 

 

The normalize

 

is mostly a large shifter. The 
shifter has more than one stage. The stages are 
organized from the coarsest to the finest. The last stage 
performs a shift by one or two due to correction signal. 
This should have a negligible effect on the delay of the 
last stage. 

d)

 

Rounding

 

The IEEE 754 floating-point standard has been 
widely adopted since its introduction in 1985. The 
standard requires that all arithmetic operations are 
rounded so as to maintain as high a degree of accuracy 
and uniformity across different computing platforms as 
possible. The rounding decision is taken by knowing 
also sticky and round bits. The sticky bit is calculated 
from the result by OR-ing all least significant bits after 
the round bit. Rounding operations were originally 
viewed as a final separate step in most arithmetic circuit 
implementations. This has been merged with the carry-
propagate addition in floating-point adders by delaying 
normalization until after rounding. Four different 
rounding modes are laid down by the IEEE floating-point 
standard

 

[8], [9]: rounding toward 0, rounding to 
nearest (even), and rounding to ± . Rounding to 
nearest (even) is the standard’s default mode; rounding 
toward zero is helpful in many DSP applications; and 
rounding to ±

 

is used in interval arithmetic, which 
affords bounds to be specified on the accuracy of a 
number.
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V. Simulations Results 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 : Simulation result of Leading Zero Anticipatior 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 : Simulation result of Leading zero detector 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 : Top Module of Fused Multiply Add 

a) Delay 

The delay of both architectures is measured in 
the proposed architecture is less delay. Which is 
represented through the graph which is shown in the Fig 
the red line in the graph shows the actual FMA and the 
blue line represents the modified FMA. 

b)
 

Power
 

The power is the important aspect of the any 
architecture as the power decreases the power 
consumption of the entire processor decreases. In this 
project the power of the both proposed and the previous 
architecture are calculated using Cadence RC complier 
in different TSMC standard libraries. The proposed 
architecture is efficient in terms of power.

 

Table II : Summary report of Area and Power 

Methods                  
Using- nm Area 

(µm²) 
Power 
(mW) 

Existing 
Method(90nm)

 87,908
 

19
 

Proposed           
Method (45nm)

 6,984
 

6.35
 

VI.
 

Conclutions 

Architecture for a floating-point Multiply-Add-
Fused (FMA) unit that reduces the latency of the 
traditional FMA units has been proposed. The proposed 
FMA is based on the combination of the final addition 
and the rounding, by using proposed LZD.

 
This novel 

leading one detection algorithm allowing us to 
significantly reduce the anticipation failure rates. We 
embedded the proposed technique in Fused floating 
point multiply and Accumulation unit and its silicon area 
and performance with other existing solution.

 
This 

approach has been used previously to reduce the 
latency of the floating-point addition and multiplication. 
However, it can be used only if the normalization is 
performed after the rounding and this is not possible for 
the FMA operation because the rounding position is not 
known until the normalization has been performed. To 
overcome this difficulty, we propose that the 
normalization be carried out before the addition. This 
required a careful design of some other parts of the 
FMA, the leading-zeros-detector (LZD).
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