
© 2014. Mandala Rakesh Raj & Ms S. Sujana. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Researches in Engineering: J
General Engineering
Volume 14 Issue 6 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Energy Efficient FMA for Embedded Multimedia Application

 By Mandala Rakesh Raj & Ms S. Sujana
 Vardhaman College of Engineering, India

Abstract- This article presents energy efficient fused multiplyadd for multimedia applications. Low
cost, low power and high performance factors diddle the design of many microprocessors
directed to the low-power figuring market. The floating point unit occupies a significant
percentage of the silicon area in a microprocessor due to its wide data bandwidth and the area
occupied by the multiply array. The fused floating-point multiply-add unit is utilitarian for digital
signal processing (DSP) applications such as fast Fourier transform (FFT) and discrete cosine
transform (DCT). The proposed designs are implemented for single precision and synthesized
with a 45-nm standard cell library. To improve the performance of the fused floating point
multiply-add unit, we are supervening upon leading zero anticipation with the novel leading zero
detection, as the novel leading one detection algorithm allowing us to significantly reduce the
anticipation failure rates.

Keywords: floating point, binary128, fused multiply add, simd, implementation, computer
arithmetic.

GJRE-J Classification : FOR Code: 090607

EnergyEfficientFMAforEmbeddedMultimediaApplication

 Strictly as per the compliance and regulations of:

Energy Efficient FMA for Embedded Multimedia
Application

Mandala Rakesh Raj α & Ms S. Sujana σ

Abstract- This article presents energy efficient fused multiply-
add for multimedia applications. Low cost, low power and high
performance factors diddle the design of many
microprocessors directed to the low-power figuring market.
The floating point unit occupies a significant percentage of the
silicon area in a microprocessor due to its wide data
bandwidth and the area occupied by the multiply array. The
fused floating-point multiply-add unit is utilitarian for digital
signal processing (DSP) applications such as fast Fourier
transform (FFT) and discrete cosine transform (DCT). The
proposed designs are implemented for single precision and
synthesized with a 45-nm standard cell library. To improve the
performance of the fused floating point multiply-add unit, we
are supervening upon leading zero anticipation with the novel
leading zero detection, as the novel leading one detection
algorithm allowing us to significantly reduce the anticipation
failure rates.
Keywords: floating point, binary128, fused multiply add,
simd, implementation, computer arithmetic.

I. Introduction

his paper presents energy efficient fused multiply-
add unit for multimedia applications. In this,
floating point can be implemented by using

different precisions. As we have SP (Single Precision),
DP (Double Precision), QP (Quadruple Precision). IEEE
Binary 32 which is pertained as single precision and
binary64 referred to as double precision. Floating-point
operations have both gained widespread popularity in
versatile multimedia and scientific applications, resulting
in modern processors patronize both the precisions.
Due to accumulation errors in computations they are
becoming deficient for today large-scale applications.
This precision problem can be overcome by one
promising approach that is by using the binary 128
which is referred to as quadruple precision or QP
format. The accuracy and numerical stability of many
applications can be improved by introducing this format
and is already specified in the new IEEE-754-2008
standard. Another approach to which we have to
improve the performance is using the fused multiply add
(FMA) operation which yields one rounding error for two
operations [3]. The first FMA is introduced in the year
1990 by IBM RS/6000 [6], [7]. After FMA is implemented
by several companies like HP, MIPS, ARM and Intel.

Author

α: M.Tech (DECS), Vardhaman College of Engineering,
Vavilalapally, Karimnagar, Telangana.
e-mail: Mrakeshraj89@gmail.com

Author

σ: Associate Professor, Vardhaman College of Engineering,
Vavilalapally, Karimnagar, Telangana. e-mail: sujanasm@gmail.com

Many algorithms are developed on floating-point fused
multiply add unit to decrease its latency [2], [4]. As we
can say it is a key feature of the floating-point unit
because it greatly increases the floating-point
performance and accuracy since rounding is performed
only once for the result.

A Field Programmable Gate Array, FPGA
provides a versatile and inexpensive way to implement
and test VLSI designs. It is mostly used in low volume
applications that cannot afford silicon fabrication or
designs which require frequent changes or upgrades.

In FPGA’s, the bottleneck for designing efficient
floating-point units has mostly been area with
advancement in FPGA architecture [3], there is a
significant increase in FPGA densities so latency has
been the main focus of attention in order to improve
performance.

The main contribution and objective of our work
is to implement the architecture which is proposed by
Lang/Bruguera but with little change to facilitate the
implementation.

In reminder of this paper is organized as
follows. Proposed FMA unit section 2 backgrounds,
section 3 proposed methods and section 4 describes its
general architecture. Section 5 provides the evaluation
results and Section 6 concludes this paper.

II. Background

In this paper, the floating-point fused multiply-
add operation A x B + C is implemented for the IEEE
floating- point format. In this format, a floating-point
number X represents the value pes fX −××−= β)1(,
Where s , f , β ,e ,and p are integers with s being the
sign bit; f the normalized mantissa; β the radix, 2 for
binary; e the biased exponent; and p the biased
number.

The fused multiply-add unit gets the input
operands A, B, and C with values ea

a
sa fA 2..)1(−= ,

eb
b

sb fB 2..)1(−=

and

ec
c

sc fC 2..)1(−=

and performs the

fused multiply- add operation:

)2..)1(2..)1((ec
c

scebea
ba

sbsa fffrndCBA −+−=+× +⊕

 Where the computed fused multiply- add result
is rounded and normalized. The FMA architecture
proposed before implemented in several floating-point

T

© 2014 Global Journals Inc. (US)

G
l o
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
I
 V

er
si
on

 I

19

Y
e
a
r

20
14

J

units of general-purpose processors is shown in Fig. 1.
The steps in this implementation are:

a)

Multiplication and alignment shift

•

Acquiring an intermediate carry-save product by
multiplication of B and C.

•

Inorder to reduce the latency, the bit inversion and
alignment of the significand of A is done in parallel
with the multiplication

[2]. The bit inversion provides
the one’s implement of A for an effective
subtraction.

•

The shift amount of

the alignment depends on the
value of d = Ea – (Eb

+ Ec), where Ea, Eb, Ec

are the
exponents of the A, B, and C operands,
respectively.

•

When d ≥ 0 (i.e. Ea > (Eb + Ec)), in a conventional
alignment, B x C would

have to be aligned with a
right shift of d bits.

 Fig. 1 :

Basic architecture of FMA unit

 •

Instead, shift the addend A to the left to

perform the
alignment

parallel with the multiplication. For double
precision format the maximum left alignment shift
would be 56 bits. When d ≥ 56, CB×

is placed to
the right of the least significant bit of A; in this case,
B x C affects only the calculation

of the sticky bit.
Maximum

left shift is obtained by observing that the
guard (position 53) and the round (position 54) bits
are 0 when the result signific

and corresponding to
the addend. Consequently

two additional

positions
are included, resulting in the shift of 56 positions.
When d < 0, the addend A would have to be
aligned with a right shift of d bits. In this case the
maximum alignment shift would be 105 bits for

double precision formats.

•

For shift amount larger than 105, d < -105, the
operand A is placed to the right of the

least-
significant bit of CB× , affecting only the calculation
of the sticky bit.

•

To avoid bidirectional shifter the alignment is
implemented as a right shift by placing the addend
A to the left of the most significant bit of the product
B x C by 56 bits. Two extra bits are placed between
the addend A and

the product CB×

to allow
correct rounding when A is not shifted. For d ≥ 0
with this implementation, A is right shifted (56- d)
bits; then, the shift amount is shift amount = max
{0, 56 – d}.

•

For d < 0, A is right shifted 56-d bits, then shift
amount =

min {161, 56 – d}.

By

combining both
cases, the

shift amount is in the range [0:161],
requiring a 161-bit right shifter. Moreover, the shift
amount is computed as shift amount = 56-d.

b)

The multiplier produce 106-bit sum and carry
vectors that are reduced together with the

aligned A
using 3:2 CSA, because the product has only 106
bits. The 55 most-significant bits will be sign
extension bits, for theses 55 most significant bits,
we use two multiplexers, one to select between A
and inverted A as a sum vector and the second one
to select between zeros and A as a carry vector by
Xor-ing sign extension bits then the outputs of the
two multiplexers are concatenated at the output of
the CSA to obtain the 161-bit sum and carry words.

c)

The next step is the addition of the carry and sum
words and the determination of the shift amount for
normalization.

•

The carry and sum words, obtained at the output of
the CSA, are added in a 161-bit one’s complement
adder (with end around carry adjustment for
effective subtraction). As the

result

can be negative,
a complementer is required at the output of the
adder.

•

In parallel with the significands addition, the
normalization shift is determined. The LZA (Leading
Zero Anticipator) [12] produces the amount of the
shift directly from the operands.

d)

Once the result of the addition is obtained, the
normalization shift can be performed since the shift
amount has been already determined. A
normalization shift is required to place the most-
significant bit of the result at bit 0; as a
consequence, normalization is performed to
compensate for the cancellation produced in
subtraction as well as to compensate for the way
the alignment is performed.

Energy Efficient FMA for Embedded Multimedia Application

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

20

J

e
 X

IV

Is
su

e
V
I
 V

er
si
on

 I

e) The last step is the rounding of the result
With this scheme, the delay of the FMA

operation is determined by the sum of the delays of the

 following components: multiplier, 3-2 CSA, 161-bit adder
plus complementer, normalization, and rounding. On the
other hand, the main hardware components are:
multiplier, alignment shifter, 3:2 CSA, LZA, 161-bit
adder, normalization shifter, and rounder.

III.

Proposed

Architecture

We now describe the proposed FMA
architecture. Since the unit is quite complex, we present
this description in a single step. In this section, we give
an overview of the scheme, with just enough detail to
make it understandable and believable. Here we

use Fig. 2 to illustrate the description.

The objective of the proposed FMA architecture
is to reduce the overall delay, and Power. Since, in
floating-point addition and multiplication, one of the
approaches to reduce latency has been to combine
addition with rounding [5], [10], [12], [13], we follow the
same approach. For this approach, in floating-point
addition and multiplication, the order of normalization
and rounding is interchanged. This seems impractical to
do for FMA because, before the normalization, the
rounding position is not known. The solution we explore
is to perform the normalization before the addition.

Fig. 2 :

Block diagram of the proposed FMA
Architecture

To improve the performance of the fused
floating point multiply-add unit, we are supervening
upon leading zero anticipation with the novel leading
zero detection, as the novel leading one detection
algorithm allowing us to significantly reduce the

anticipation failure rates. The proposed leading digit is
worked using tree structure, where inputs of n bits are
divided into n/2 pairs of bits.

For each pair of bits a two bit count is
generated and another counter is triggered to

calculate
the depth of the tree. For example a four digit can be
paired into two pairs and a counter is used to find the
one/ zero in pair i and i+1 and the second counter is
used to find the value of required bit in which pair and at
which level. This method is continued of log2

(n) levels.
To boost this tree structure we use a structure method
which speed’s up by a 4 bit or even 8bit to reduce the
hierarchy of the tree structure.

IV.

Detailed

Description

of some

Modules of the

Architecture

a)

3:2

CSA

The multiplier produce 106-bit sum and carry
vector that are reduced together with the aligned A
using 3:2 CSA. Although the output of the multiplier
must be positive number because we multiply two
positive numbers (sign and magnitude representation),
one of the two output vectors of the multiplier may be
negative because of using booth algorithm which use
negative sets {-1,-2} which convert a positive number
with sign and magnitude representation to a negative
number with two’s complement

representation. The
addition of sum and carry vectors must be a positive
number but one of them, not both,

may be negative.

Instead of using 161-bit CSA, only the 106 least-
significant bits of the aligned A are needed as input to
the 3:2 CSA, because the product of sum and

carry
vectors has only 106 bits and The 55 most-significant
bits will be sign extension bits which have two cases

{0, 0} if both sum and carry vectors are positive or

{0, 1} if one of them is negative. For the 55 most-
significant bits, we

use two multiplexers, one to select
between A and inverted A as a sum vector and the
second one to select between zeros and A as a carry
vector by Xor-ing sign extension bits then the outputs of
the two multiplexers are concatenated at the output of
the CSA to obtain the 161-bit sum and carry words.

b)

Leading zero Anticipator

The leading zero anticipator (LZA) has two main
parts: the encoding of the leading-one position i.e.
detection module and the correction of this position i.e.
correction module. The detection module

are divided
into two parts the first one is called LZA and it
determines the number of leading zeros i.e. the position
of the leading one. By producing a string of zeros and
ones where the position of the most significant 1 is the

Energy Efficient FMA for Embedded Multimedia Application

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
I
 V

er
si
on

 I

21

Y
e
a
r

20
14

J

position of the leading one. The second part, called
leading zero detectors (LZD), counts the number of zero
digits from the left-most position until the first nonzero
digit is reached i.e. leading one position. Since the
detection is done from most significant bit to least

significant bit regardless of the carry that may come
from the least significant bit, the detection of leading
one position may be off by one bit.

The LZA logic takes
two input strings and uses a set of logical equations
given below.

After LZA logic LZD is used

to drive the
normalization shifter [11] by encoding the position of
leading one to its weighted binary representation.

0),..()..(111111 >+⊕+×= ++++++ iggzztgzzgtf iiiiiiiiiii

 100 .ttf =

Where iii bat ⊕=

 iii bag .=

iii baz .=

The LZD unit assumes n bits as input and
produces log2

n bits of the leading one position

Pattern

Position

Valid

1x

0 Yes

01

1 Yes

00

X No

Table (I)

shows the truth table of 2-bits LZD. By
using two 2-bits LZD’s we can get 4-bit LZD is shown in
Figure (a). Following the same concept we can get LZD
with higher number of output using hierarchical
structure.

Fig. 3 :

Using 2-input LZD

c)

Normalization

The IEEE 754 binary floating-point standard
defines a set of normalized numbers and four sets of
special numbers. Of the four types of special numbers,
three do not require computation for arithmetic
operations. These include Not-a-Numbers (NaN),
infinities, and zeros. De-normalized numbers, also
known as subnormal or denormals are the fourth type of
special number and do require computation.

Normalized numbers can be described by the
following:

biasxexs fX −×××−= 21)1(

Where X is the value of the normalized number,
Xs is the sign bit, Xf is

the fractional part of the
significand, Xe

is

the exponent, and bias is the bias of
the format which corresponds to 127, 1,023, and
16,383, for single, double, and quad, respectively.

Denormalized numbers can be described by
the following:

0,20)1(1 ≠×=×××−= − fiXfX e
biasxs

The denormal format differs from a normal
number in that there is no implied bit and the exponent
is not equal to Xe – bias, but , instead, is forced up by 1
to Emin, which is equal to -126, -1,022, and -16,382,
depending on the format.

Using the results from the LZD, the result from
the adder is shifted left to normalize the result. That
means now the first bit is 1.

The normalize

is mostly a large shifter. The
shifter has more than one stage. The stages are
organized from the coarsest to the finest. The last stage
performs a shift by one or two due to correction signal.
This should have a negligible effect on the delay of the
last stage.

d)

Rounding

The IEEE 754 floating-point standard has been
widely adopted since its introduction in 1985. The
standard requires that all arithmetic operations are
rounded so as to maintain as high a degree of accuracy
and uniformity across different computing platforms as
possible. The rounding decision is taken by knowing
also sticky and round bits. The sticky bit is calculated
from the result by OR-ing all least significant bits after
the round bit. Rounding operations were originally
viewed as a final separate step in most arithmetic circuit
implementations. This has been merged with the carry-
propagate addition in floating-point adders by delaying
normalization until after rounding. Four different
rounding modes are laid down by the IEEE floating-point
standard

[8], [9]: rounding toward 0, rounding to
nearest (even), and rounding to ± . Rounding to
nearest (even) is the standard’s default mode; rounding
toward zero is helpful in many DSP applications; and
rounding to ±

is used in interval arithmetic, which
affords bounds to be specified on the accuracy of a
number.

Energy Efficient FMA for Embedded Multimedia Application

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

22

J

e
 X

IV

Is
su

e
V
I
 V

er
si
on

 I

V. Simulations Results

Fig. 4 : Simulation result of Leading Zero Anticipatior

Fig. 5 : Simulation result of Leading zero detector

Fig. 6 : Top Module of Fused Multiply Add

a) Delay

The delay of both architectures is measured in
the proposed architecture is less delay. Which is
represented through the graph which is shown in the Fig
the red line in the graph shows the actual FMA and the
blue line represents the modified FMA.

b)

Power

The power is the important aspect of the any
architecture as the power decreases the power
consumption of the entire processor decreases. In this
project the power of the both proposed and the previous
architecture are calculated using Cadence RC complier
in different TSMC standard libraries. The proposed
architecture is efficient in terms of power.

Table II : Summary report of Area and Power

Methods
Using- nm Area

(µm²)
Power
(mW)

Existing
Method(90nm)

 87,908

19

Proposed
Method (45nm)

 6,984

6.35

VI.

Conclutions

Architecture for a floating-point Multiply-Add-
Fused (FMA) unit that reduces the latency of the
traditional FMA units has been proposed. The proposed
FMA is based on the combination of the final addition
and the rounding, by using proposed LZD.

This novel

leading one detection algorithm allowing us to
significantly reduce the anticipation failure rates. We
embedded the proposed technique in Fused floating
point multiply and Accumulation unit and its silicon area
and performance with other existing solution.

This

approach has been used previously to reduce the
latency of the floating-point addition and multiplication.
However, it can be used only if the normalization is
performed after the rounding and this is not possible for
the FMA operation because the rounding position is not
known until the normalization has been performed. To
overcome this difficulty, we propose that the
normalization be carried out before the addition. This
required a careful design of some other parts of the
FMA, the leading-zeros-detector (LZD).

References Références Referencias

1.

Yeh, H. “Fast method of floating point multiplication
and accumulation”, US patent no.5867413,
February 1999.

2.

T. Lang and J.D. Bruguera, “Floating-Point Multiply-
Add-Fused with Reduced Latency,” IEEE Trans.
Computers, vol. 53, no. 8, pp. 988-1003, Aug. 2004.

3.

C. Hinds, “An Enhanced Floating Point Coprocessor
for Embedded Signal Processing and Graphics
Applications,” Proc. 33rd Asilomar Conf. Signals,

Systems, and Computers, pp. 147-151, 1999.

4.

L. Chen and J. Cheng, “Architectural Design of a
Fast Floating-Point Multiplication-Add Fused Unit
Using Signed-Digit Addition,” Proc.

Euromicro

Symp. Digital Systems Design, p. 346, 2001.

5.

G. Even and P.M. Seidel, “A Comparison of Three
Rounding Algorithms for IEEE Floating-Point
Multiplication,” IEEE. Trans.

Computers, vol. 49, no.

7, pp. 638-650, July 2000.

6.

Montoye, E., “Floating Point Unit for Calculating
A=XY+Z Having Simultaneous Multiply and Add,”
United States patent, no. 4969118, November 1990.

7.

Montoye, R., Hokenek, E., and Runyon, S., “Second
–Generation RISC Floating Point with Multiply-Add
Fused,” IEEE journal of solid-state circuits, vol. 25,

Energy Efficient FMA for Embedded Multimedia Application

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

e
 X

IV

Is
su

e
V
I
 V

er
si
on

 I

23

Y
e
a
r

20
14

J

no. 5, October 1990, Pages: 1207 –1990, pages
1207-1213.

8. S.F. Oberman, H. Al-Twaijry, and M.J. Flynn, “The
SNAP Project: Design of Floating-Point Arithmetic
Units,” Proc. IEEE 13th Symp. Computer Arithmetic,
pp. 156-165, 1997.

9. M.R. Santoro, G. Bewick, and M.A. Horowitz,
“Rounding Algorithms for IEEE Multipliers,” Proc.
IEEE Ninth Symp. Computer Arithmetic,
pp. 176-183, 1989.

10. P.M. Seidel and G. Even, “How Many Logic Levels
Does Floating-Point Addition Require?” Proc. Int’l
Conf. Computer Design (ICCD 98), pp. 142-149,
1998.

11. Schmookler, M., and Nowka, K., “Leading Zero
Anticipation and Detection -- A Comparison of
Methods,” Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, Vail, Colorado,
June 2001, Pages: 7 – 12.

12. Lang, T., and Bruguera, J., “Floating-Point Fused
Multiply-Add with Reduced Latency,” IEEE
Transactions on Computers, vol. 53, no. 8, August
2004, Pages: 42 – 51.

13. Santoro, M., Bewick, G., and Horowitz, M.A.,
“Rounding Algorithms for IEEE Multipliers,”
Proceedings of the 9th IEEE Symposium on
Computer Arithmetic, Santa Monica, California,
USA, September 1989, Pages: 176 – 183.

Energy Efficient FMA for Embedded Multimedia Application

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(
)

V
ol
um

 Y
e
a
r

20
14

24

J

e
 X

IV

Is
su

e
V
I
 V

er
si
on

 I

	Energy Efficient FMA for Embedded Multimedia Application
	Authors
	Keywords
	I. Introduction
	II. Background
	III. Proposed Architecture
	IV. Detailed Description of some Modules of the Architecture
	a) 3:2CSA
	b) Leading zero Anticipator
	c) Normalization
	d) Rounding

	V. Simulations Results
	a) Delay
	b) Power

	VI. Conclutions
	References Références Referencias

