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System Reliability Design: A Survay 
Belal Ayyoub

Abstract- In System reliability design, it is essential to know the 
effectiveness of different design options in improving system 
reliability. Various Reliability models techniques have been 
created to evaluate these parameters by applying both 
analytic and simulation techniques, and this paper reviews 
those related primarily to reliability optimization design 
problems. The purpose, type of models used, type of systems 
modeled, heuristic and metaheauristic techniques will be 
discussed and serviceability parameters are surveyed. 
Examples of some of the key modeling issues such as RAP, 
UMGF and MSS , similarities and differences between various 
models and tools and can be help to aid in selecting models 
and tools for a particular tools for a particular application or 
designing needs for future needs. 

i. Background Issues 

ystem reliability can be defined as the probability 
that a system will perform its intended function for 
a specified period of time under stated conditions 

[1]. Many modern systems, both hardware and 
software, are characterized by a high degree of 
complexity. To enhance the reliability of such systems, it 
is vital to define techniques and models aimed at 
optimizing the design of the system itself. Estimating 
system reliability is an important and challenging 
problem for system engineers. [2]. It is also challenging 
since current estimation techniques require a high level 
of background in system reliability analysis, and thus 
familiarity with the system. Traditionally, engineers 
estimate reliability by understanding how the different 
components in a system interact to guarantee system 
success. Typically, based on this understanding, a 
graphical model (usually in the form of a fault tree, a 
reliability block diagram or a system graph) is used to 
represent how component interaction affects system 
functioning. Once the graphical model is obtained, 
different analysis methods [3–5] (minimal cut sets, 
minimal path sets, Boolean truth tables, etc.) can be 
used to quantitatively represent system reliability. Finally, 
the reliability characteristics of the components in the 
system are introduced into the mathematical 
representation in order to obtain a system-level reliability 
estimate. This traditional perspective aims to provide 
accurate predictions about the system reliability using 
historical or test data. This approach is valid whenever 
the system success or failure behavior is well 
understood. In their paper, Yinong Chen, Zhongshi He, 
Yufang Tian [6]. They   classified   system   reliability     
in to  two   categories:  topological   and   flow  reliability.  
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In topological reliability analysis, one assumes the 
system to be performing adequately as long as there 
exist any path from a specified source node (or nodes) 
to a specified terminal node (or nodes) [7]. Flow 
reliability: The flow reliability model assumes that the 
system components are of finite capacity. The system is 
considered to performing adequately only if it allows a 
certain a mount of flow to be transmitted from source to 
terminal nodes [7]. In a topological reliability Yinong, 
Yufang Tian assume that components are reliable while 
nodes may fail with certain probability, but also in 
literature exist components subject to failure [8]. Ideally, 
one would like to generate system design algorithms 
that take as input the characteristics of system 
components as well as system criteria, and produce as 
output an optimal system design, this is known as 
system synthesis [9], and it is very difficult to achieve. In 
the most theoretical reliability problems the two basic 
methods of improving the reliability of systems are 
improving the reliability of each component or adding 
redundant components [7]. Of course, the second 
method is more expensive than the first. 

ii. Basic Definishin 

a) The Objective function 
One of the major challenges to solving the 

optimal system design problem is computing the 
objective function. Unless a system is simple or well 
structured, obtaining a closed form mathematical 
expression for the objective function is extremely difficult 
specially when we deal with the complex system or non-
series parallel system. In their 1965 paper, Moscowitz & 
Mclean [10] first formulated mathematically the 
optimization problem of system reliability subject to 
system cost. Since then, several papers have been 
written about optimization system reliability. Roughly 
speaking. These papers consider only a single 
Objective and applying traditional mathematical 
programming techniques and based on two different 
types of formulations for the reliability objective function 
as follows in equations 1 and 2 bellows: 
 
Subject to 
 
 
 
 
 

                                                                  
                 (2) 

Or

 

S 
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Subject to

 
 
 
 
 
b)

 

Identifying System Constraints

 

The optimal solution should be obtained within 
the

 

resource restrictions. These restrictions are also 
called the

 

constraints of the optimization problem. 
Constraints

 

include:

 
•

 

Desired reliability

 
•

 

Desired availability

 
•

 

Desired MTTF or MTBF

 
•

 

Allowed downtime

 

•

 

Allowed unavailability

 

•

 

Cost: Allowed budget for spares and/or repair

 

resources

 

•

 

Allowed weight

 

•

 

Available space or volume

 

i.

 

Building Cost-Effective Systems

 

In the majority of applications, the objective of 
system

 

design is to minimize the overall cost associated 
with the

 

system. The total cost is the sum of several cost 
factors

 

[11], such as:

 

•

 

System failure costs, which includes damage and

 

inconvenience costs

 

•

 

Downtime costs associated with loss of production

 

•

 

Component and spare costs

 

•

 

Maintenance costs, which includes repair,

 

replacement, and inspection costs

 

•

 

Maintenance personnel costs, which includes call-
up

 

costs and hourly rates

 

•

 

Warranty costs

 

•

 

Storage costs

 

•

 

Transportation costs

 

•

 

Miscellaneous costs, which includes replacing

 

accessories

 

c)

 

Fundamental system configurations

 

Tillman, Hwang, and Kuo [12] provide a 
thorough review

 

related to optimal system reliability with 
redundancy. They

 

divided optimal system reliability 
models with redundancy

 

into:

 

•

 

series,

 

•

 

parallel,

 

  

  

  

   

also in there reference book [31] add a 
configuration

 

of:

 

•

 

hierarchal series-parallel systems

 

•

 

K-

 

out

 

of

 

–

 

n systems,

 

•

 

cold standby redundancy in a

 

single-component 
system,

 

•

 

redundancy

 

with imperfect

 

switching system.

 

•

 

multi-cause fauile model regardless

 

those 
repairable or non repairable systems.

 
 
 
 
 
 

Figure 1

 

:

 

Series System

 

 

 

 

 

 

 

 

 

 

 

Figure 2

 

:

 

Parallel Network

 

 

 

 

 

 

 

 

 

 

 

Figure

 

3

 

:

 

Series Parallel System
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Figure 4 : Parallel-Series System



 

 

 

 

 

 

 

   

 

 

 

 

 

 
 
 
 
 
 
 

Figure

 

5

 

:

 

Stand by System

 
 
 
 
 
 
 
 
 

 

Figure

 

6

 

:

 

Complex System

 

iii.

 

Classification

 

of

 

Reliability

 

Optimization

 

Techniques

 

Published papers which produced for 
techniques

 

optimization models can be classified into 
two paths: and

 

•

 

Heuristics methods

 

•

 

Metaheuristics. methods

 

Heuristics methods such as

 

•

 

integer programming,

 

•

 

dynamic programming,

 

•

 

linear programming,

 

•

 

geometric programming,

 

•

 

generalized Lagrangian functions, and heuristic

 

approaches.

 

Metaheuristic algorisms such as

 

•

 

Genetic algorithm

 

•

 

The simulated annealing method

 

•

 

Non equilibrium simulated annealing method.

 

•

 

Tabu search method

 

•

 

Ant colony optimization method ACO

 

•

 

Paeticle

 

swarm optimization method.

 

•

 

Artificial immune system.

 

•

 

Fuzzy system

 

•

 

Artificial neural networks

 

•

 

Particle swarm optimization

 

•

 

Hybrid methods

 

a)

 

Metaheuristic Techniques

 

Many classical mathematical methods have 
failed in

 

handling nonconvexities and nonsmoothness in 
reliability–

 

redundancy optimization problems. As an 
alternative to theclassical optimization approaches, the 
meta-heuristics have

 

been given much attention by 
many researchers due to

 

their ability to find an almost 
global optimal solutions.

 

Also [13] classify them into:

 

See figure (7)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure

 

7 :

 

Content snapshot from optimal reliability 
design text book

 

•

 

Heuristics for redundancy allocation

 

•

 

Metaheuristic algorithms for redundancy allocation.

 

•

 

Exact methods for redundancy allocation

 

•

 

Heauristic for reliability-redundancy allocation
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• Multiple objective optimizations in reliability systems

• Optimal of interchangeable components in coherent 
system.

In the following section a details survey and 
discussion between heuristic and metaheuristic
methods will be illustrated.

b) Heuristic and metaheuristics methods in literature
Many algorithms have been proposed but only 

a few have been demonstrated to be effective when 
applied to large-scale nonlinear programming problems. 
Also, none has proven to be generally superior. Fyffe, 
Hines, and Lee provide a dynamic programming 
algorithm for solving the system reliability allocation 



  

 
 

 
 

  

problem [14]. As the number of constraints in a given 
reliability problem increases, the computation required 
for solving the problem increases exponentially. In order 
to overcome these computational difficulties, the 
authors introduce the Lagrange multiplier to reduce the 
dimensionality of the problem. To illustrate their 
computational procedure, the authors use a 
hypothetical system reliability allocation problem, which 
consists of fourteen functional units connected in series. 
While their formulation provides a selection of 
components, the search space is restricted to consider 
only solutions where the same component type is used 
in parallel. Nakagawa and Miyazaki [15] show a more 
efficient algorithm compared to dynamic programming 
using the Lagrange multiplier. In their algorithm, the 
authors use surrogate constraints obtained by 
combining multiple constraints into one constraint. In 
order to demonstrate efficiency of the new algorithm, 
they also solve 33 variations of the Fyffe problem. Of the 
33 problems, their N&M algorithm produces optimal 
solutions for 30 of them. Misra and Sharma [16] present 
a simple and efficient technique for solving integer 
programming problems such as the system reliability 
design problem. The algorithm is based on function 
evaluations and a search limited to the boundary of 
resources. In the nonlinear programming approach, 
Hwang, Tillman and Kuo [17] use the generalized 
Lagrangian function method and the generalized 
reduced gradient method to solve nonlinear optimization 
problems for reliability of a complex system. They first 
maximize complex-system reliability with a tangent cost-
function and then minimize the cost with a minimum 
system reliability. The same authors also present a 
mixed integer programming approach to solve the 
reliability problem [18]. They maximize the system 
reliability as a function of component reliability level and 
the number of

 

components at each stage. Using a 
genetic algorithm (GA) approach, Coit and Smith [19, 
20, 21] provide a competitive and robust algorithm to 
solve the system reliability problem. The authors use a 
penalty guided algorithm which searches over feasible 
and infeasible regions to identify a final, feasible optimal, 
or near optimal, solution. The penalty function is 
adaptive and responds to the search history. The GA 
performs very well on two types of problems: 
redundancy allocation as originally proposed by Fyffe, et 
al., and randomly generated problems with more 
complex configurations. For a fixed design configuration 
and known incremental decreases in component failure 
rates and their associated costs. In table (1) a 
comments on some most famous approaches in

 

heauristic methods.

 

Table 1 :

 

Comments on some heuristic approaches:

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

In recent studies, redundancy allocation 
problems (RAP) are mainly considered, because it is 
more difficult to improve the component reliability. 
Which can be improved by [22] (Wang, 1992):

 

•

 

Use more reliable components;

 

•

 

increase redundant components in parallel;

 

•

 

utilize both #1 and #2; and

 

•

 

enable repeatedly
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Approaches Comments 

Sharma-
Venkatswaran 
approach [5]

The algorithm is simple and can be 
applied easily to all problems. 
However, the solutions are not 
always the optimal ones, they may 
be suboptimal ones.

Misra‟s approach [3] It is for linear constraints problems 
only.  As the number of constraints 
increases the computational time 
becomes large.,

Aggarwal et al.‟s 
approach [1,2]

Widely applicable to many 
redundancy allocation problems 
for both linear and nonlinear 
constraints, but fail to solve 
Problem3.  An effective method 
for linear constraints problems. 

Nakagawa-
Nakashima‟s 
approach [4]

Very through discussion on the 
balance between the objective 
function and constraints but can 
not solve complex system problem. 

Tillman et al.‟s 
approach [8]

Combination of Hooke and Jeeve 
pattern search and a heuristic 
method of mixed integer 
programming problems. 

Extended Nakagawa 
- Nakashima‟s 

An algorithm for redundancy 
optimization of a general system.   
The balancing coefficient is there. 

Uskakov‟s approach 
[9]

It is the only algorithm to solve the 
cost minimization problem for 
multifunction system. 

As one of the latest studies on the reliability 
allocation problem, Yalaoui et al. [23] used dynamic 
programming to determine the reliability of the 
components in order to minimize the consumption of a 
system resource under a reliability constraint in a series-
parallel system. The RAP is to select the optimal 
combination of components and redundancy degree to 
meet resource constraints while maximizing the system 
reliability. A wide variety of these problems have been 



formulated and a large number of solution techniques 
have been proposed for various system structures such 
as series, network, k-out-of-n, etc. Aggarwal and Gupta 
[24] and Ramirez-Marquez et al. [25] proposed heuristic 
algorithms. Hsieh [26] used the linear approximation 
method and Ha and Kuo [27] adopted integer 
programming for the problem. We refer the readers to a 
review paper by Kuo and Prasad [28] and a book on the 
topic by Kuo et al. [29].

 

The meta-heuristic methods have been using to 
find the optimal solution of combinatorial optimization 
problems since Chern [30] proved the RAP is a NP-hard 
problem. Coit et al. [31,

 

32] and Yokota et al. [33] used 
the genetic algorithm (GA), and Liang and Smith [34] 
and Nahas and Nourelfath [35] proposed an ant system 
for solving RAP. Levitin [36,

 

37] and Wu and Chan [38] 
considered a multistate system using meta-heuristic 
methods. However, Boland and EL-Neweihi [39] 
showed that it is not true in the case of redundancy in 
series system with non-identical spare parts. In the real 
system, the multi-level redundancy in which system, 
module, and component levels are simultaneously 
considered as the objects of redundancy can be 
applied to the RAP. In other words, exact algorithms for 
finding the optimal solution are not appropriate when the 
numbers of subsystems and component types are 
large. Hence, some search techniques involving 
heuristics or meta-heuristics have been proposed for 
solving MSPS redundancy allocation problem, such as 
Genetic Algorithm (GA) approaches [40, 41, 42], and 
Ant Colony Optimization (ACO) approach [43, 44]. 
These approaches are utilizing the so-called universal 
generating function [45] to estimate the system reliability 
and have been demonstrated to yield very good 
solutions. These meta-heuristics have main advantages 
in solving MSPS redundancy allocation problem: only 
few constraints for the solution representation required 
and no extra information from the objective function 
needed. Before employing any meta-heuristic on a NP-
hard problem such as MSPS, it is important to 
understand the essential of the problem under 
investigation. Hence, some problem-specific issues 
have to be studied

 

in advance to perform a so-called 
intelligent search to avoid unnecessary computational 
burden. These issues are based on the influence of 
solution representation, neighborhood structure and 
solution initialization on the designing of algorithm. Note 
that

 

stochastic population-based search approaches, 
such as GA and ACO, enjoy the advantage of global 
search. However, no matter what kind of solution coding 
they adopt for solving MSPS, the (randomized) initial 
population may contain a certain amount of infeasible or 
undesirable (much higher cost or reliability than 
system‟s requirement) solutions. For each specified 
MSPS problem, the solution representations for the 
above approaches have to be defined and coded 
according to the universal generating function. 

Moreover, the genetic operations in GA or 
solution/pheromone updating in ACO may result in 
dramatically changes in solutions (infeasible or 
undesirable). These search techniques also lack

 

the 
capability of doing in-depth local search could need a 
considerable amount of generations to perform some 
necessary neighborhood moves to approach an optimal 
solution. Furthermore, either a solution repairing 
procedure (using local search) or penalization on 
objective is required for these search approaches to 
ensure feasibility because the properties of MSPS 
solutions are not considered. Tabu

 

Search (TS), 
proposed by Glover, is another popular and promising 
meta-heuristic optimization technique [46,

 

47]. Most TS 
approaches can be characterized by two important 
features: (1) executing local search, and (2) prohibiting 
moves that have been selected previously. Hence, TS 
has the ability to escape the trap of local optimum, and 
unlike GA and ACO, TS can execute in-depth local 
search and use memory performing an intelligent 
search. TS has been employed to solve some reliability 
problems, such as structural design problems with 
reliability constraints [48, 49], and optimal configuration 
problems depending on the reliability of components 
[50]. TS also demonstrated its efficiency in finding the 
optimal solution for the redundancy allocation problem 
for k-out-of-n system [51]. Most of the researches 
restricted the MSPS redundancy allocation problem 
under the so-called “without component mixing” 
condition [52, 53, 54, 55], which means that once a 
component type is selected in a subsystem, only the 
same type of component can be used redundantly to 
provide the required function. a tabu search without the 
need of the universal generating function is proposed for 
optimizing MSPS redundancy allocation problem, and it 
can be implemented to handle “with or without 
component mixing” restriction. In order to limit the 
chance of moving from a feasible solution to infeasible 
or undesirable one, a tailored neighborhood structure 
and corresponding moves are proposed to perform an 
intelligent search by considering the properties of MSPS 
solutions. Genetic Algorithm (GA) is a probabilistic 
search method stimulated by genetic evolution 
[56](Holland, 1975). It was initiated from the 1970s and 
widely applied to many fields since 1980s. GA can 
efficiently solve the availability optimization problem of 
series-parallel, as it is suitable to the domain of feasible 
solution with non-linearity or discontinuity. [57]
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System Reliability Design: A Survay

(Goldberg (1989) made a systematic study on GA 
mechanism, and identified three basic operators: 
reproduction, crossover and mutation. When the 
solution space to be searched is relatively large, noisy, 
non-linear and complicated, the GA has higher 
opportunity for obtaining near-optimal solutions. The GA 
solely takes fitness function as its evaluation criterion. It 
is also a parallel processing mechanism, which 
searches for different areas by multiple starting points. 



Based on continuous evolution of generations and 
efficient search using the information of parent 
generation, it is possible to increase the speed of finding 
an optimal solution [58]( (Lin, Zhang, & Wang, 1995). 
The mutation mechanism provides more opportunities 
to overcome the spatial limitations of local optimum, and 
allows for convergence towards global optimum. GA 
was applied to a wide variety of fields in recent decades 
[59], [60]

 

(((Lapa, Pereira, & De Barros, 2006; Lin, 
Wang, & Zhang, 1997). It was also successfully used to 
solve the reliability optimization problem of a series-
parallel system. [61]

 

(Painton and Campbell (1995) 
solved the reliability optimization problem related to 
personal computer design. They regarded a personal 
computer as a series-parallel system of twelve 
components, each of which has three optional 
packages. [62](Yokota, Gen, and Ida (1995) utilized GA 
to solve successfully the reliability optimization problem 
of series-parallel system with parallel components and 
several failure modes.[63](Azaron et al. (2005a) 
developed a new approach to evaluate the reliability 
function of a class of dissimilar-unit redundant systems 
with exponentially distributed lifetimes. There are few 
researches toward the reliability optimization of non 
repairable systems with cold-standby redundancy 
scheme. [64]

 

(Gnedenko and Ushakov (1995) 
presented algorithms to maximize the median time to 
failure. [65]

 

(Nakashima and Yamato (1977) solved an 
analogous problem to maximize the time period where 
system reliability remains above a preselected value. 
Their algorithm assumes that components

 

have 
exponential lifetimes, but that the distribution 
parameters are the decision variables to be determined 
in addition to the redundancy levels. The problem of 
reliability optimization of nonrepairable cold-standby 
redundant systems has received less attention. [66] 

                                         

(Albright and Soni (1984) have solved a reliability 
optimization problem for nonrepairable systems with 
standby redundancy. They assumed exponential lifetime 
and one component choice per subsystem. [67] 
Robinson and (Neuts (1989) studied system design for 
nonrepairable systems with cold-standby redundancy. 
They considered systems with components that have 
phase-type lifetime distributions. [68]

 

(Coit

 

(2001) has 
determined optimal design configurations for 
nonrepairable series–parallel systems with cold-standby 
redundancy. His problem formulation considers 
nonconstant component hazard functions and imperfect 
switching. [69]

 

(Prasad et al. (1999) considered the 
problem of allocating multifunctional redundant 
components for deterministic and stochastic mission 
times. In their formulation, there is a limit on the total 
number of redundant components, which can be used. 
There are also a few papers that consider the multi-
objective reliability optimization for either time-
independent case see [70]

 

(Sakawa 1978) or active 
redundant systems [71] ((Sakawa 1980; [72] (Dhingra 

1992) and optimize system reliability, cost, weight, and 
volume for a given mission time. [73]

 

(Azaron et al. 
(2005b) used the surrogate worth trade-off method to 
find the optimal distribution parameters (continuous 
decision variables like [74]

 

(Nakagawa and Miyazaki 
1981) in a cold-standby system.

 

The major limitations in the reliability evaluation 
and optimization approaches for dissimilar-unit cold-
standby systems, thus far, are:

 

•

 

Most available algorithms assume that each unit is 
composed of a single component, but they also 
cannot get the results in closed form

 

[75]

 

((Goel and 
Gupta 1983).

 

•

 

Available algorithms that do address dissimilar-unit 
multicomponent cold

 

stand

 

by

 

systems assume that 
each unit is composed of a number of components 
arranged in a series configuration. Although this is a 
start, there are many more complicated system 
configurations that should be examined. The 
problem lies in the difficulty of presenting more 
complicated structures.

 

•

 

Existing system reliability optimization algorithms 
are most often available for active redundancy. The 
logarithm of system reliability for an

 

active standby 
redundant system is a separable function; dynamic 
programming or integer programming can be used 
to determine optimal solutions to the problem.

 

•

 

Available algorithms that do address cold-standby 
optimization generally assume similar redundant 
units and exponential lifetimes.

 

•

 

Most available optimization algorithms consider 
continuous decision variables. In this case, it is 
difficult in practice to select a component to match a 
specific distribution parameter.

 

•

 

Only one criterion for time-dependent reliability, like 
maximizing mean time to failure (MTTF) or 
maximizing the system reliability at a given mission 
time is considered in the model. In the reliability 
optimization problem, one often wishes to lower the 
risk that systems with short system lifetime are 
produced, but only maximizing MTTF is not always 
fit for the requirement, especially A multi-objective 
discrete reliability optimization problem when the 
optimally designed system has a large variance of 
time

 

to failure (VTTF). The system reliability at the 
mission time is another important criterion, which 
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should be considered in the model. As is addresses 
in recent review of the literature for example in [76], 
[77]. Generally, the methods of MSS reliability 
assessment are based on four different 
approaches:

i. The structure function approach.
ii. The stochastic process (mainly Markov) approach.
iii. The Monte-Carlo simulation technique.
iv. The universal moment generating function (UMGF)



 
  

  
  

  

approach. In reference [76], a comparison between 
these four approaches highlights that the UMGF 
approach is fast enough to be used in the optimization 
problems where the search space is sizeable. The 
reliability optimization problem ROP is studied in many 
different forms as summarized in [78], and more 
recently in [79]. The ROP for the multi-state reliability 
was introduced in [80]. In [81] and 82], genetic 
algorithms were used to find the optimal or nearly 
optimal transformation system structure. This work uses 
an ant colony optimization approach to solve the ROP 
for multi-state plastic recycling system. The idea of 
employing a colony of cooperating agents to solve 
combinatorial optimization problems was recently 
proposed in [83]. The ant colony approach has been 
successfully applied to the classical traveling salesman 
problem in [84], and to the quadratic assignment 
problem in [85]. Ant colony shows very good results in 
each applied area. It has been recently adapted for the 
reliability design of binary state systems in [86]. The ant 
colony has also been adapted with success to other 
combinatorial optimization. The ant colony method has 
not yet been used for the redundancy optimization of 
multi-state systems.

 

In the table 2 we will mention a set of well-
known lates published paper s in the last years with its 
main approach and concepts.

 

Table 2 :

 

Latest Paper Published In System Reliability
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Published 

paper

Contributions

Mettas‟s 
approach 
[87]

There are some limitations to simulation 
methods for estimating the reliability of 
non-repairable systems effectiveness. For 
example, if the number of simulations 
performed is not large enough,  simulation 
offers a small range of calculation results 
when compared to analytical methods. A 
software tool has been developed that 
calculates the exact analytical solution for 
the reliability of a system.   In addition, 
optimization and reliability allocation 
techniques can be utilized to aid engineers 
in their design improvement efforts. 
Finally, the time-consuming calculations 
and the non repeatability issue of the 
simulation methodology are eliminated.

Wang‟s 
approach[
88]

Through the use of reliability block 
diagrams (RBD), is often used to obtain 
numerical system reliability characteristics. 
Traditional use of simulation results 
provides no easy way to compute reliability 
importance indices. To bridge this gap, 
several new reliability importance indices 
are proposed and defined in this paper. 
These indices can be directly calculated 
from the simulation results and their 
limiting values are traditional reliability 

importance indices. Examples are provided 
to illustrate the application of the proposed 
importance indices.

Larry‟s 
approch
[89]

International Standards, ANSI National 
Standards, and various industry handbooks 
and standards. These documents have many 
typical reliability management and analysis 
tasks in
common such as prediction, allocation, 
worst case analyses, part selection, Failure 
Mode Effects and Criticality Analysis 
(FMECA), Failure Reporting and 
Corrective Action System (FRACAS), etc. 
DoD studies have shown that even when 
the basic reliability tasks are implemented 
the resulting system reliability is often 
lower than expected and often insufficient. 
This problem was addressed by the Panel 
on Statistical Methods for Testing and 
Evaluating Defense Systems, National 
Research Council (NRC) in 1998 (Ref. 2  
Significant to the NRC‟s recommendations 
to DoD and the rewrite of the Primer is the 
question: Just how effective are reliability 
tasks in identifying design flaws and 
correcting reliability deficiencies early in 
system development? Clearly the 
effectiveness will vary from system to 
system but are there data or studies that will 
give insight into this issue? This paper  
provided a framework and data for 
addressing these questions, beside this 
paper mentioned a practical metric to 
measure the effectiveness of the reliability 
tasks that take place before reliability 
growth or other prototype testing.   In 
addition this paper provided  a number of 
proven methods for increasing the 
effectiveness of several reliability tasks.

Huairui‟s 
approuch[
90]

Most of the existing degradation analysis 
methods assume that the degradation 
process can be regularly inspected In this 
paper, a design of experiment (DOE) 
method of using the degradation process 
together with the observed failure data to 
improve reliability is proposed. Unlike 
other degradation analysis methods, the 
proposed method does not require regular 
degradation measurements. In the use of 
DOE, all the factors that affect the 
degradation process are classified into two 
types. The Type I factor is called the 
amplification factor. Its effect on 
degradations is well known based on the 
engineering knowledge of the physical 
process of the degradation. The Type II 
factors are called control factors. Their 
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effects are unknown and need to be studied 
by experiments. By combing the 
engineering knowledge and the observed 
failures, the effects of control factors are 
analyzed using a linear regression method.  

Huairui‟s In this paper, a systematic procedure of 
approach 
[91]

applying ccelerated life tests and simulation 
to analyze the reliability and availability of 
such dynamic systems is first proposed. 
Methods for solving both non-repairable 
and repairable systems are provided. For 
non-repairable systems, an analytical 
solution based on cumulative damage
theory is discussed. Therefore, the 
exponential assumption, which is used in 
many existing methods, is not required in 
the proposed method. In addition to the 
analytical solution, a cumulative damage-
based simulation solution is also provided. 
For repairable systems, based on different 
scenarios in real applications, the repairable 
phased-mission system is classified into 
three categories. Because of the complexity 
of the problem, only simulation results are 
given for repairable systems. The proposed 
systematic procedure of applying 
accelerated life tests in phased-mission 
system analysis provides a general 
guideline for dealing with real-world 
applications. The cumulative-damage-based 
analytical and simulation method provide a 
practical and useful approach for solving 
phased-mission system problems. 

Dingzhou‟s 
approach 
[92]

In this paper, They proposed a reliability 
optimization framework based on Dynamic 
Bayesian Networks (DBN) and Genetic 
Algorithm (GA) which considers system 
reliability as a design parameter in design 
stages and can accelerate the design process 
of a reliable system. In this paper, they 
extend it to a more complicated system with 
dynamic behavior. In order to capture the 
different dynamic behaviors of a system, 
DBN is used to estimate the system 
reliability of a potential design. Two basic 
DBN structures “CHOICE” and 
“REDUNDANCY” are introduced in this 
study. GA is developed  . Simulation results 
show that the integration of GA 
optimization capabilities with DBN 
provides a robust, powerful system-design 
tool  system.

Mingxiao‟
as 
approuch.
[93]

One of the important reliability activities in 
Design for Reliability (DFR) is system 
reliability allocation at the early product 
design stage.  Complex systems consist of 
many subsystems, which are developed 
concurrently and sometimes independently. 

final system prototype is ready after months 
or years of development. From a project 
management point of view, the reliability 
for each subsystem or sub-function should 
be examined as early as possible. This 
paper propose a new approach forallocating 
system reliability together with confidence 
level to the subsystems. The proposed 
method can be used for complex systems 
with serial, parallel, and k-out-of-n 
configurations.

I Conclusion

This paper is a state-of-art review of the 
literature related to optimal system reliability with and 
without redundancy. The literature is classified as 
follows. Optimal system reliability models with 
redundancy Series Parallel Series-parallel Parallel-series 
Standby Complex (nonseries, nonparallel) Optimization 
techniques for obtaining optimal system configuration 
Integer programming Dynamic programming Maximum 
principle Linear programming Geometric programming 
Sequential unconstrained minimization technique 
(SUMT) Modified sequential simplex pattern search 
Lagrange multipliers and Kuhn-Tucker conditions 
Generalized Lagrangian function Generalized 
reduced gradient (GRG) Heuristic approaches 
Parametric approaches Pseudo-Boolean programming 
Miscellaneous. We present a brief survey of the current 
state of the art in system reliability. Most system 
reliability problems are, in the worst case, NP-hard and 
are, in a sense, more difficult than many standard 
combinatorial optimization problems. Nevertheless, 
there are, in fact, linear and polynomial time algorithms 
for system reliability problems of special structure. We 
review general methods for system reliability 
computation and discussed the central role played . We 
also point out the connection with the more general 
problem of computing the reliability of coherent 
structures. The class of coherent structures contains 
both directed and undirected networks as well as logic 
(or fault) trees without not gates. This topic is a rich area 
for further research.
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