
A Smart Model for Web Programming Agile Testing1

Belal Ayyoub12

1 Albalqa Applied University3

Received: 14 December 2013 Accepted: 4 January 2014 Published: 15 January 20144

5

Abstract6

A Model that Minimizing the number of test operations on Web Programming Exhaustive7

Testing is introduced. The proposed model based for the first time to the best of our8

knowledge, the Hebbian trained matrix algorithm. The model problem is formed as Agility9

WEB Programming Methodologies optimization problem. Time and web developer efforts will10

be reduced on white box testing type. A full numerical solved example is introduced. Our11

numerical experience shows that our approach is promising especially for Web Programming12

Exhaustive Testing.13

14

Index terms— exhaustive testing, Hebbian rules, white box, software testing, agile.15
i.16
introduction and related works esting in agile software development should provide the information that17

stakeholders need to make decisions and steer the development into the right direction. We can increase the18
value of testing most by improved intelligence earlier. The challenges of testing in agile development have to19
be solved! What information is the testing based on? What to be tested and what are the expected results?20
How to make testing, development and business collaborate? How to involve customer and business people in21
testing? How to test early so we can achieve the customer requirements in time? Can we use a method to do22
that smoothly? How to match in between exhaustive testing which take time and to be delivered with customer23
satisfaction?. The ultimate goal of function testing is to verify that the system performs its functions as specified24
in the requirements and there are no undiscovered errors left. Since proving the code correctness is not feasible,25
especially for large software systems, the practical testing is limited to a series of experiments showing the program26
behavior in certain situations. Each choice of input testing data is called a test case. If the structure of the27
tested program itself is used to build a test case, this is called a white box (or open-box) approach [1]. Several28
white-box methods for automated generation of test cases are described in literature. For example, the technique29
of [4] uses mutation analysis to create test cases for unit and module testing. A test set is considered adequate30
if it causes all mutated (incorrect) versions of the program to fail. The idea of testing programs by injecting31
simulated faults into the code is further extended in [10]. Another paper [11] presents a family of strategies for32
automated generation of test cases from Boolean specifications. However, as indicated by [10], modern software33
systems are too large to be tested by the white-box approach as a single entity. White-box testing techniques can34
work only at the subsystem level. In function tests that are aimed at checking that a complex software system35
meets its specification, black-box (or closed box) test cases are much more common. The actual outputs of a36
black-box test case are compared to expected outputs based on the tester’s knowledge and understanding of the37
system requirements. Since the testers have time for only a limited number of test cases, each test case should38
have a reasonable probability of detecting a fault along with being non-redundant, effective, and of a proper39
complexity [6]. It should also make program failures obvious to the tester who is supposed to know the expected40
outputs of the system. Thus, selection of the tests and evaluation of their outputs are crucial for improving41
the quality of tested software with less cost. If the functional requirements are current, clear, and complete,42
they can be used as a basis for designing black-box test cases. Assuming that requirements can be re-stated as43
logical relationships between inputs and outputs, test cases can be generated automatically by such techniques as44
cause-effect graphs (see [8]) and decision tables [2]. Another method for automatic generation of test vectors from45
functional relationships is described in [3]. Several ways are proposed to determine, input-output relationships46

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

4 GENERAL FORMULATION OF THE PROBLEM:

in tested software. Thus, a tester can analyze system specifications, perform structural analysis of the system’s47
source code, and observe the results of system execution. While available system specifications may be incomplete48
or outdated, especially in the case of a ”legacy” application, and the code may be poorly structured, execution49
data seems to be the most reliable source of information on the actual functionality of an evolving system. In this50
paper, we extend the idea initially introduced [1] that input-output analysis of execution data can be automated51
by Info-Fuzzy Network methodology of data mining [7] [9]. In [7] the proposed concept of IFN-based testing has52
been demonstrated on individual discrete outputs of a small business program. The current study evaluates the53
effectiveness of the Hebbian rules in Neural networks to let the system more intelligent (expert-system) and can54
be learned by previous cases tested methodology on a complex application having multiple continuous outputs.55
This is also deal with the question of determining the minimal number of training cases required to. The rest of56
the paper is organized as follows. Section 2 provides the methodology on the process testing and derived required57
paths. Section 3 presents the notation and definition of the proposed model. Section 4 describes a detailed of58
the proposed methodology. Finally, Section 5 summarizes the paper with initial conclusions and directions for59
future research and applications.60

ii.61

1 Methodology62

Testing is the process of executing a program with the intent of finding errors.” [13]. Assume that there are 52063
possible different execution flows. If we execute one test per millisecond, it would take 3.170 years to test this64
program. See figure (1). All tests should be traceable to customer requirements and the uncover errors will be65
discovered then quickly. The system configuration can be represented mathematically by a graph, with nodes and66
representing links. Seefigures (1), (2). Our system will minimize the number of ’things in processes, minimize67
the size of ’things in processes establish a regular cadence deliver business value early, often and consistently,68
empower the team to create software that meets the customer needs. The ultimate objective of this paper is to69
give software developers procedures to enhance their ability to find acceptance testing -by customer-for which70
testability is an important consideration. Ideally, one would like to generate an acceptance solution algorithms71
that take as input the characteristics customers requirements as well as needs criteria, and produce as output72
an optimal path for solution, this is known as acceptance testing, and it is very difficult to achieve. However,73
we consider set of paths that will execute all statements and all conditions in a program, at least once that is74
already designed then we try to derive all the test cases, then the customer will select his steps of tests according75
to his requirements then a test related path will be chosen and get the test result, if the solution face customer76
satisfaction the test path will be selected and complete the software development. Customer partner ensure77
customer gets the value they are paying for build a reference first instead of System requirements. Customer gets78
what he wants and validates the expected results. Developers know the right answer Use the simplest technology79
team capability ease of use case of Refactoring Flexibility to Change test automation empower developers to run80
their own tests run tests regularly [13]. Our paper considers the customer to be member in the testing because81
the expected results depend on his satisfaction and agreement. Our aim is to minimize the time consumed for82
test according to our new method procedure. The customer choose path steps toward the objective need to be83
achieved, then we can detect the suitable solution by multiply the steps with the trained matrix, the solution84
wanted path will be the result iii.85

2 Notation and Definitiond86

Now we will illustrate in this section, all parameters which we used in our new model and we will define every87
item: Si: Solution Number88

3 Mathematical Model89

4 General formulation of the problem:90

Analysis function which can be derived for acceptance tests in Extreme Programming Exhaustive testing:?Wi =91
Si*Pi, n Wt =??Wi i=192

The accepted test will be:Ta = Wt * Pi93
Which guarantee the solution to be assess customer visible functionality. We will present her an important94

assumptions to declare and describe the formulation of our new model. We derive test cases to exercise these95
paths. And convert each path to its matrix representation and derive the trained matrix. We have paths as96
follows:Path 1: [1,1,1,0,0,1,1,1] Path 2: [1,1,1,0,0,0,1,1] Path 3: [1,1,0,1,0,0,1,1] Path 4: [1,1,0,1,0,0,1,0] 1 097
?W1=[1,1,1,0,0,1,1,1]*0= 0 ?W2= [1,1,1,0,0,0,1,1]**= ?W3= [1,1,0,1,0,0,1,1] *= ?W4= [1,1,0,1,0,0,1,0] *= Wt98
=?W1+?W2+?W3+?W4 =99

During the collaboration with customer to output the features and requirements needed a suite solution can100
be chosen which will achieve the problem and customer requirements. Assume that the customer choose the101
solution with feature binary: [0, 0,1,0] then to know what is the path to be tested to give solution, it can be102
derived as follows:103

2

Chosen pattern of solution multiply by trained matrix. By dividing the results on the maximum number and104
the integer values to be taken the new results will be the matrix value [0 0 1 0], this value represent the solution105
number 3 which will be under test and expected needs to the customer. The result represents the path of solution106
wanted the next step will be to be tested directly without any loose of time to discover with uncover error with107
needless paths. In this method we can minimize the Exhaustive testing and minimize the time taken and efforts108
which yield to produce the project in quick time and help in the highly iteration and incremental analysis.109

v.110

5 Conclusion111

Exhaustive tests should be planned long before testing begins. The Hebbian trained matrix algorithm applies112
to Web programming excusive testing as well all testing should be traceable to customer requirements. Most113
effective testing should be performed by Hebbian trained matrix, time and web developer efforts will be reduced114
too. 1

1

Figure 1: Fig. 1 :
115

1© 2014 Global Journals Inc. (US)

3

5 CONCLUSION

Figure 2:

4

[Kaner et al. ()] , C Kaner , J Falk , H Nguyen . 1999. Testing Computer Software. Wiley.116

[Sharma et al. (2013)] ‘A Survey on Software Testing Techniques using Genetic Algorithm’. Chayanika Sharma117
, Sangeeta Sabharwal , Ritu Sibal . IJCSI International Journal of Computer Science Issues January 2013.118
10 (1) .119

[Last and Kandel ()] ‘Automated Test Reduction Using an Info-Fuzzy Network’. M Last , A Kandel . Annals of120
Software Engineering, Special Volume on Computational Intelligence in Software Engineering, 2003.121

[Zhang and Wang ()] Automatic generation of test data for path testing by adaptive genetic simulated annealing122
algorithm, Bo Zhang , Chen Wang . 2011. IEEE. p. .123

[Weyuker et al. ()] ‘Automatically Generating Test Data from a Boolean Specification’. E Weyuker , T Goradia124
, A Singh . IEEE Transactions on Software Engineering 1994. 20 p. .125

[Schroeder and Korel ()] ‘Black-Box Test Reduction Using Input-Output Analysis’. P J Schroeder , B Korel .126
Proc. of ISSTA ’00, (of ISSTA ’00) 2000. p. .127

[Chauhan ()] Naresh Chauhan . Software Testing: Principles and Practices, 2010. Oxford University Press.128

[El-Ramly et al. (2002)] ‘From Runtime Behavior to Usage Scenarios: An Interactionpattern Mining Approach’.129
M El-Ramly , E Stroulia , P Sorenson . Proceedings of KDD-2002, (KDD-2002Edmonton, Canada) July 2002.130
ACM Press. p. .131

[Mark et al. (2006)] L Mark , F Menahem , K Abraham . The Data Mining Approach to Automated Software132
Testing Proceedings of the 21 st Annual Conference on Computer Assurance, (Gaithersburg, Maryland) June133
2006.134

[Voas and Mcgraw ()] Software Fault Injection: Inoculating Programs against Errors, J Voas , G Mcgraw . 1998.135
Wiley.136

[Beizer ()] Software Testing Techniques, 2 nd Edition, B Beizer . 1990. New York, NY: Van Nostrand Reinhold.137

[Beizer ()] Software Testing Techniques. 2 nd Edition, B Beizer . 1990. Thomson.138

[The Economic Impacts of Inadequate Infrastructure for Software Testing (2002)] The Economic Impacts of In-139
adequate Infrastructure for Software Testing, 02-3. May 2002. National Institute of Standards & Technology140
(Planning Report)141

5

	1 Methodology
	2 Notation and Definitiond
	3 Mathematical Model
	4 General formulation of the problem:
	5 Conclusion

