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Calculation of the Strength Reliability
of Parts under Random Loading

V. N. Syzrantsev α , K. V. Syzrantseva σ & L. A. Chernaya ρ

Abstract- The most important characteristics of many 
engineering objects are their strength and reliability. To 
determine the probability of an object failure according to the 
strength criterion, it is necessary to know the laws of 
distribution of the actual and ultimate stresses. However the 
processing of actual data on the acting and ultimate stresses 
indicates that these data cannot be described by the known 
laws of the parametric statistical theory. 

This paper proposes a new approach to the solution 
of the problem, which is based on the application of the 
mathematical apparatus of nonparametric statistics. The 
considered approach of calculating the probability of a failure 
and the quantile estimates of the safety factor of machine 
parts are universal. They allow estimation of the strength 
reliability of items regardless of the complexity of the laws of 
distribution of random values of the actual and ultimate 
stresses.
Keywords: stresses, strength, reliability, failure, methods 
of nonparametric statistics, distribution density function, 
parzen-rosenblatt method.

I. Introduction

t present, when solving the problems associated 
with an increase in the manufacturing efficiency, 
improvement of the diagnostics of diseases, 

statistical data processing in insurance and financial 
mathematics, one has to deal with experimental data. 
The distribution density functions (DDFs) for these data 
are most frequently unknown and are not described by 
the laws of distribution of random quantities that were 
developed in the theory of mathematical statistics. 
Therefore, the main trend in the development of the 
statistical science involves the elaboration of methods 
for processing experimental data that allow the actual 
laws of distribution of random quantities to be taken into 
account. In the second half of the last century, an 
approach to estimation of many functionals on the basis 
of a nonparametric estimate of the probability density 
was proposed in [1, 2, 3]. To date, owing to the 
development of the computer engineering, this 
approach has gained significant development for 
solving various problems in economics and medicine [4, 
5, 6, 7]. Nonparametric methods became widespread in 
solving identification and regression-analysis problems 
[8, 9, 10].

The most important characteristics of numerous 
engineering objects are their strength and reliability. Up

                     

to now, these characteristics are determined on the 
basis of the laws that are considered in the theory of 
parametric statistics [11, 12]. At the same time, it was 
shown in [13, 14, 15] that the DDFs of the actual and 
ultimate stresses, on the basis of which the probability 
of no-failure operation of an item is determined, are 
seldom described by the laws that were studied in the 
statistical theory. This study considers the solution of the 
problem of calculating the probability of no-failure 
operation of several engineering objects on the basis of 
applying methods of nonparametric statistics.

II. Statement of the Problem

Calculated estimates of the strength reliability of 
parts are currently obtained using two fundamentally 
different approaches. According to the first one [11, 12], 
the probability of a failure of a part is calculated as

                          [ ]0s)-( ≥= σyPr                              (1)

whereσ - are the effective stresses (MPa) at a 
hazardous place of the part, 

s - the permissible stresses (MPa) for its 
material.

Problem (1) requires knowledge of the 
distribution density function (DDF) )(σσf of the random 
quantity   and the DDF )(sfS   of the random quantity s. 
If the functions  )(σσf and  )(sfS are known to within 
parameters, the solution of problem (1) reduces to the 
calculation of the integral
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It is conventionally assumed that the density 
functions )(σσf and )(sfS are distributed according to 
a normal law, thus allowing the problem (1) to be solved 
on the basis of tables of the normal distribution. Papers 
[11, 12] presents the solutions of problem (1) for several 
laws of distribution of the random quantitiesσ and s that 
were studied in the theory of parametric statistics.

Despite the versatility of this approach, it is not 
always possible to obtain a quantitative estimate of the 
strength reliability of a studied part within its framework. 

A
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This is confirmed by Fig. 1, which shows the functions 
)(σσf   and )(sfS  for one of the studied parts. 

   

 

Fig. 1 : Density functions )(σσf   and  )(sfS  

It can be easily seen in Fig. 1 that the 
calculation of the probability of failure using formula (1) 
results here in the zero value of the probability of a 
failure. In this case, the problem of estimating the 
technical state of a part can be solved via realization of 
the second approach, which implies the calculation of 

quantile ( α
σn  ) estimates of the safety margin ( σn ) at a 

specified probability α via the numerical solution of the 
equation 

                        ( ) ασσ

α
σ

=∫ dnnf
n

n
0

                                (3) 

with respect to α
σn  .  

Here,  )( σnfn   is the DDF for σn , which is 

calculated from the dependence 

                               σσ sn =                                       (4) 

As a rule, when the safety margin is calculated, 
the random character of σ   and s is disregarded and 
only their average values are used. However, for a 
number of reasons, determining the characteristics of 
the random quantity σn  on the basis of formula (4) is 

not a trivial problem [13]. For actual conditions of the 
use of parts, the random quantity σ is not described by 
the laws that were considered within the framework of 
parametric statistics. The analysis of the results of 
processing experimental data (yield stress, ultimate 
stress of pipe steels), which are used to calculate 
allowable stresses, shows that the use of a normal 
distribution law is not always correct here and more 
“flexible” laws should be used, e.g. the Gram-Charlier 
law. Because the samples mii ,1, =σ  and mii ,1, =σ     

always have finite lengths, the left- and right-censored 

density functions  )(σσf  and  )(sfS  must be used in 
calculations using expression (4). The law of distribution 
of the random quantity σn  is known only for some 
particular cases. For example, if the functions )(σσf   
and )(sfS

 
obey a normal law, the distribution density 

function )(sfS
 
corresponds to the Cauchy distribution, 

for which a mean value and a variance are generally 
absent. For the reasons that were presented above, 
problem (3) can be solved using conventional methods 
of parametric statistics only under serious assumptions. 
As a result, the correct calculation results are not 
guaranteed. Here, more powerful algorithms that 
operate regardless of the complexity of the functions  

)(σσf , )(sfs
 
, and )(sfs

 
must be applied. Exactly such 

algorithms, the possibility of realization of which is 
provided only by the achievements of the modern 
computer engineering and computer simulation 
methods, were developed within the framework of the 
theory of nonparametric statistics [13, 14, 15].

 
III.

 
Used

 
Theoretical

 
Methods

 
For determination of probability of part failure in 

accordance with equation (2) it is necessary to solve two 
auxiliary problems.

 

 
Problem 1: Reconstruction of an unknown DDF on the 
basis of a sample of

 
values of a random quantity

 
 

According to [13], on the basis of a sample of 
stresses mii ,1, =σ

 
, the estimate of a left                      

 ( { }ii
σσ minmin =

 
) and right ( { }ii

σσ maxmax =
 
) censored 

unknown DDF   for stresses is represented in the form of 
the expansion (Parzen-Rosenblatt estimate with a 
normal kernel):
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and the value of the spreading parameter σh   

corresponds to the maximum of the information 
functional: 
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 The solution of problem (6) allows determination 
of all parameters that are included in (5) and, thus, 
reconstruction of the function )(σσf  .  
 For a kernel function with a normal kernel, a 
close-to-optimal value of the parameter   is defined from 
the dependence 

                          5
1

−
⋅= mDh σσ

                                      (7) 

where σD  is the sample variance that is 

calculated on the basis of the available sample of values  

mii ,1, =σ : 
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Problem 2: Generation of a random-quantity sample in 
accordance with a known DDF. 

This algorithm is a nonparametric generator of a 
random quantity. Let there be a random-quantity sample  

njs j ,1, = , on whose basis the DDF )(sfs    is defined. 

As an example, let us assume that the random quantity   

obeys the left ( { }jj
ss maxmax =  ) and right ( { }jj

ss minmin =  ) 

censored Gram-Charlier law: 
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; 1λ  and 2λ  are the mean value and the 
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are, respectively, the asymmetry and excess for the 
random quantity s. 
 Let us consider the algorithm for extending the 
sample js    to a length nm >  .  

 Let us specify a random quantity V with a 
normal distribution law. To obtain the random quantity s 
with the distribution function )(sFs , it is necessary to use 

the equation [13]: 

                                     VsFs =)(                              (10) 
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By solving transcendent equation (10) at a fixed 

value of the random quantity constV =
 
from the range 

[0, 1], we determine a new value of the random quantity 
s with the DDF )(sfs

 . This procedure is repeated, and 
the sample s  is extended to the required size. 

The algorithm for generating a sample of a 
random quantity that, e.g., has the DDF in the form of 
(5) is constructed quite analogously. This algorithm is 
called the nonparametric random-number generator                

[13, 14,15]. 

IV. Computer Experiments Realizing 

Developed Approach 

Example 1. It is required to determine the probability of a 
failure of a pipe that is exposed to an internal pressure 
and a temperature during operation. The pipe diameter 
is 1420 mm, its wall thickness is 16.5 mm, the pipe 
material is 17GS steel, and the permissible stresses for 
the pipe material obey a normal distribution law. 

In order to reconstruct the DDF )(σσf
 , 

samples of the pressure mipi ,1, =  and temperature
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miti ,1, =  , which were registered every day during a 

year ( 365=m ), were used. By realizing the algorithm of 
the auxiliary problem 2, we reconstructed the pressure 
and temperature DDFs )( pf p   and )(tft  ) (see Fig. 2). 

For each pair of values mitp ii ,1,, =   
calculations of the effective stress iσ in the pipe were 

performed and allowed us to obtain the sample  

mii ,1, =σ , using which the DDF for the acting stresses  

)(σσf was reconstructed. 

 The function  )(sfs  for steel 17GS is taken in 

the form (9) with the following parameters: 1λ  = 570.9 

MPa,  2λ  = 19.3 MPa,  3λ  = 0.1480, 4λ   = 0.0209, 

mins  = 530 MPa, and maxs  = 600 MPa. The graphic 

illustration of the functions )(σσf  and )(sfs  is shown in 

Fig. 3, from which it follows that, in this case, the 
probability of a failure, i.e., the solution of problem (2), is 
zero ( =Q  0).  

 

Fig. 2 : Functions )( pf p
 and )(tft . 

Fig. 3 :
 
Functions )(σσf

 
and )(sfs

Example 2.
 
For the data of example 1, it is required to 

determine quantile estimates of the safety margin.
 

 
Let us use the sample mii ,1, =σ

 
. For the 

known function )(sfs , the sample misi ,1, =  is 

obtained using the algorithm of auxiliary problem 2. If 
the values of iσ  and is  are known, formula (4) is used 

to calculate the sample min i ,1, =σ

 

. By realizing the 

algorithm of auxiliary problem 1, we determine the 

density function )( σnfn

 

. This function is shown in                

Fig. 4.
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In order to calculate quantile 

                                             ( 50,0;05,0;01,0=α ) estimates of the safety margin 
                    ( α

σn
 
), it is necessary to solve equation (4). The resulting 

values are 01,0
σn =1,19417; 05,0

σn =1,23122; 50,0
σn   

=1,33403. If it is required to estimate the probability that 
the safety margin is <1.2, it is sufficient to calculate the 
integral

 

            [ ] σσσ dnnfn n )(2,1
2,1

0
∫=≤Pr  =0,01348.           (12) 

Example 3.
 

It is required to determine the no-failure 
operation of a helical gearing. The torque at the pinion 
gear ( *

1HT
 
, Н·м) changes in accordance with the 

                       

β
 

-distribution (heavy-duty operation), in accordance 
with the γ -distribution (light-duty operation), and 
according to a bimodal law.

 

 The dependence for calculating the contact 
stresses σH

 (MPa) that act in the engagement of teeth of 
helical gearings has the form 

      
Σ⋅

+
⋅⋅⋅= H

W

H

W
HH K

u
u

b
T

a
Z

3*
13 )1(11013,6σ

 
,      (13)

 

where ZH 

 

is the coefficient that accounts for the 
shapes of the mated surfaces; aW

 

is the interaxial

 

distance of the helical gearing  (mm); bW

 

is the working 
width of the gear rim (mm); u is the gear ratio; and KHΣ   

 

is the load factor, which is related to *
1HT

 

via a nonlinear 
dependence.

 
 

It follows from (13) that the dependence of 

               

Hσ

 

on

 

*
1HT

 

is essentially nonlinear. Thus, even if the 

random quantity *
1HT

 

obeys a normal law, the law of Hσ

 

distribution of   cannot be determined.

 
 

The results of calculating the DDFs for the 
actual Hσ

 

and permissible [ ]Hσ stresses (a normal 

distribution law for [ ]Hσ

 

was adopted in the 
calculations) using the above-considered algorithms are 
presented in Fig. 5.

 

The gearing parameters are as follows: the 
number of teeth of the gear Z1

 

= 32, the number of teeth 
of the wheel Z2 = 64, the coefficient of displacement of a 
gear tooth χ1

 

= 0, the coefficient of displacement of a 
wheel tooth χ2

 

= 0, the pitch m = 5 mm, the width of the 
gear rim

 

bW

 

= 60 mm, and the tilt angle of the tooth 
trace β

 

= 16°15’. For light-duty operation, heavy-duty 
operation, and torque changes according to a bimodal 
law, the probabilities of no-failure gearing service are 
0.9980, 0.9780, and 0.9911, respectively. 

 

  

 

a)

 

light-duty operation
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Fig. 4 : Density function )( σnfn



 

b) heavy-duty operation

 

c) the torque changes according to a bimodal law 

Fig. 5 : Distribution density functions Hσ and[ ]Hσ    

V. Results and Discussion 

In the conventional approach to the solution of 
the considered problems for each random quantity 
using the fitting criteria (chi-square, omega-square, 
Kolmogorov-Smirnov), a distribution law must be 
selected. However, this law can be adopted only with a 
certain probability. The value of this probability is not a 
priori known. In this case, there is a risk of adopting a 
distribution law that is actually not realized (error of the 
second kind). Thus, the reliability of the result of solving 
the problem is an uncertain value. 

The use of methods of nonparametric statistics 
for solving problems makes it possible to eliminate the 
aforementioned uncertainty. 

VI. Conclusion 

 The approach considered in this study and the 
mathematical apparatus for calculating the probability of 
no-failure operation or a failure and quantile estimates of 
the safety margin of machine components and 
structures is universal. It allows estimation of the 
strength reliability of articles regardless of the complexity 
of the laws of distribution of random values of actual and 
limiting stresses. 
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