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6

Abstract7

At present, power system operation, control, Management becomes very complex due to8

continuously increasing demand. Flexible AC Transmission System (FACTS) controllers are9

used to increase power transfer capability of the transmission lines closer to their limits. This10

paper proposed a methodology to solve Optimal Power Flow (OPF) problem in the presence11

of Thyristor Controlled Series Capacitor (TCSC) while satisfying system operating and12

practical constraints. A novel cost objective function is formulated by combining investment13

cost of the TCSC with the conventional fuel cost function. The proposed methodology is14

tested on standard IEEE-14 bus test system with supporting results.15

16

Index terms— economic dispatch, ramp-rate limit, prohibited operating zones, TCSC, investment cost.17

1 Introduction18

t the present time, The Optimal power flow (OPF) is a very significant problem and most focused objective for19
power system planning and operation [1]. The OPF is the elementary tool which permits the utilities to identify20
the economic operational and secure states in the system [2]. The OPF problem is one of the utmost operating21
desires of the electrical power system [3]. The prior function of OPF problem is to evaluate the optimum22
operational state for Bus system by minimizing each objective function within the limits of the operational23
constraints like equality constraints and inequality constraints [4]. Hence, the optimal power flow problem can24
be defined as an extremely non-linear and non-convex multimodal optimization problem [5].25

From the past few years too many optimization techniques were used for the solution of the Optimal Power26
Flow (OPF) problem. Some traditional methods used to solve the proposed problem have some limitations like27
converging at local optima and so they are not suitable for binary or integer problems or to deal with the lack28
of convexity, differentiability, and continuity [6]. Hence, these techniques are not suitable for the actual OPF29
situation. All these limitations are overcome by metaheuristic optimization methods. Some of these methods30
are [7][8][9][10]: genetic algorithm (GA) [11], hybrid genetic algorithm (HGA) [12], enhanced genetic algorithm31
(EGA) [13][14], differential evolution algorithm (DEA) [15][16], artificial neural network (ANN) [17], particle32
swarm optimization algorithm (PSO) [18], tabu search algorithm (TSA) [19], gravitational search algorithm33
(GSA) [20], biogeography based optimization (BBO) [21], harmony search algorithm (HSA) [22], krill herd34
algorithm (KHA) [23], cuckoo search algorithm (CSA) [24], ant colony algorithm (ACO) [25], bat optimization35
algorithm (BOA) [26], Ant-lion optimizer (ALO) [27][28] and Multi-Verse optimizer (MVO) [29].36

In the present work, a newly introduced hybrid meta-heuristic optimization technique named Hybrid Particle37
Swarm Optimization-Moth Flame Optimizer (HPSO-MFO) is applied to solve the Optimal Power Flow problem.38
HPSO-MFO comprises of best characteristic of both Particle Swarm Optimization [30] and Moth-Flame Optimizer39
[31][32] algorithm. The capabilities of HPSO-MFO are finding the global solution, fast convergence rate due to40
the use of roulette wheel selection, can handle continuous and discrete optimization problems.41

According to No Free Lunch Theorem [27,29,30], particular meta-heuristic algorithm is not best for every42
problem. So, we considered HPSO-MFO for continues optimal power flow problem based on No Free Lunch43
Theorem. In this work, the HPSO-MFO is presented to standard IEEE-30 bus test system ??33] to solve the OPF44
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3 B) MOTH-FLAME OPTIMIZER

[34-37] problem. There are five objective cases considered in this paper that have to be optimize using HPSO-MFO45
technique are Fuel Cost Reduction, Voltage Stability Improvement, Voltage Deviation Minimization, Active Power46
Loss Minimization and Reactive Power Loss Minimization. The results show the optimal adjustments of control47
variables in accordance with their limits. The results obtained using HPSO-MFO technique has been compared48
with Particle Swarm Optimisation (PSO) and Moth Flame Optimizer (MFO) techniques. The results show that49
HPSO-MFO gives better optimization values as compared to other methods which prove the effectiveness of the50
proposed algorithm.51

This paper is summarized as follow: After the first section of the introduction, the second section concentrates52
on concepts and key steps of standard PSO and MFO techniques and the proposed Hybrid PSO-MFO technique.53
The third section presents the formulation of Optimal Power Flow problem. Next, we apply HPSO-MFO to solve54
OPF problem on IEEE-30 bus system in order to optimize the operating conditions of the power system. Finally,55
the results and conclusion are drawn in the last section.56

2 II. Standard PSO and Standard MFO a) Particle Swarm57

Optimization58

The particle swarm optimization algorithm (PSO) was discovered by James Kennedy and Russell C. Eberhart59
in 1995 [30]. This algorithm is inspired by the simulation of social psychological expression of birds and fishes.60
PSO includes two terms ?? ???????? and ?? ???????? . Position and velocity are updated over the course of61
iteration from these mathematical equations:1 1 1 2 2 ( ) ( ) t t t t t t ij ij v wv c R Pbest X c R Gbest X + =62
+ ? + ? (1) 1 1 t t t X X v + + = + ( ) i 1, 2...NP = And ( ) j 1, 2...NG =(2)63

Wheremax min max ( )* max w w iteration w w iteration ? = ? ,(3)64
w max =0.4 and w min =0.9.t ij v , 1 t ij v +65
is the velocity of aj th member of ani th particle at iteration number (t) and (t+1). (Usually C 1 =C 2 =2),66

r 1 and r 2 Random number (0, 1).67

3 b) Moth-Flame Optimizer68

A novel nature-inspired Moth-Flame optimization algorithm [31] based on the transverse orientation of Moths69
in space. Transverse orientation for navigation uses a constant angle by Moths with respect to Moon to fly in70
straight direction in night. In MFO algorithm that Moths fly around flames in a Logarithmic spiral way and71
finally converges towards the flame. Spiral way expresses the exploration area and it guarantees to exploit the72
optimum solution [31]:73

Moth-Flame optimizer is first introduced by Seyedali Mirjalili in 2015 [31]. MFO is a populationbased74
algorithm; we represent the set of moths in a matrix:1,1 1,2 1, 2,1, 2,2 2, ,1 ,2 , , , , , , , , d dn n n75
d m m m m m m M m m m ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ?(4)76

Where n represents a number of moths and d represents a number of variables (dimension).77
For all the moths, we also assume that there is an array for storing the corresponding fitness values as follows:178

2 . . n OM OM OM OM ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? (5)79
Where n is the number of moths. Note that the fitness value is the return value of the fitness (objective)80

function for each moth. The position vector (first row in the matrix M for instance) of each moth is passed to81
the fitness function and the output of the fitness function is assigned to the corresponding moth as its fitness82
function (OM 1 in the matrix OM for instance).83

Other key components in the proposed algorithm are flames. We consider a matrix similar to the moth matrix84
[31]:1, 1 1,2 1, 2, 1 2, 2 2, , 1 , 2 , . . . . . . . . . .. . . . . . d d n n n d FL FL FL FL FL FL F FL FL FL85
? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ?(6)86

Where n shows a number of moths and d represents a number of variables (dimension).87
We know that the dimension of M and F arrays are equal. For the flames, we also assume that there is an88

array for storing the corresponding fitness values [31]:1 2 . . n OFL OFL OF OFL ? ? ? ? ? ? ? ? = ? ? ? ? ?89
? ? ? (7)90

Where n is the number of moths.91
Here, it must be noted that moths and flames both are solutions. The variance among them is the manner92

we treat and update them, in the iteration. The moths are genuine search agents that move all over the search93
space while flames are the finest location of moths that achieves so far. Therefore, every moth searches around a94
flame and updates it in the case of discovering an enhanced solution. With this mechanism, a moth never loses95
its best solution.96

The MFO algorithm is three rows that approximate the global solution of the problems defined like as follows97
[31]:( ) MFO I, P, T = (8)98

I is the function that yields an uncertain population of moths and corresponding fitness values. The methodical99
model of this function is as follows:{ } : , I M OM ? ? (9)100

The P function, which is the main function, expresses the moths all over the search space. This function101
receives the matrix of M and takes back its updated one at every time with each iteration.: P M M ? (10)102

The T returns true and false according to the termination Criterion satisfaction:{ } : , T M true false ? (11)103
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In order to mathematical model this behavior, we change the location of each Moth regarding a flame with104
the following equation:105

( , )i i j M S M F = (12)106
Where indicate the moth, indicates the flame and S is the spiral function.107
In this equation flame FL n,d (search agent * dimension) of equation ( 6) modifies the moth matrix of equation108

(12).109
Considering these points, we define a log (logarithmic scale) spiral for the MFO algorithm as follows [31]:( ) (110

) , * cos 2 bt i j i j S M F D e t F ? = +(13)111
Where: i D expresses the distance of the moth for thej th flame, b is a constant for expressing the shape of112

the log (logarithmic) spiral, and t is a random value in [-1, 1].i j i D F M = ?(14)113
Where: i M represent the i th moth, F j represents the j th flame, and where i D expresses the path length114

of the i th moth for the j th flame. The no. of flames are adaptively reduced with the iterations. We use the115
following formulation:1 * N flame no round N l T ? ? ? = ? ? ? ? ? (15)116

Where l is the present number of iteration, N is the maximum number of flames, and Tshows the maximum117
number of iterations. O MFO O t O Quick sort O position update = + 2 2 ( ) ( ( * )) ( ) O MFO O t n n d O118
tn tnd = + = +( ) ( ) ( ) ( ) ( )119

Where n shows a number of moths, t represents maximum no. of iterations, and d represents no. of variables.120

4 c) The Hybrid PSO-MFO Algorithm121

The drawback of PSO is the limitation to cover small search space while solving higher order or complex design122
problem due to constant inertia weight. This problem can be tackled with Hybrid PSO-MFO as it extracts the123
quality characteristics of both PSO and MFO. Moth-Flame Optimizer is used for exploration phase as it uses124
logarithmic spiral function so it covers a broader area in uncertain search space. Because both of the algorithms125
are randomization techniques so we use term uncertain search space during the computation over the course of126
iteration from starting to maximum iteration limit. Exploration phase means the capability of an algorithm to127
try out a large number of possible solutions. The position of particle that is responsible for finding the optimum128
solution to the complex non-linear problem is replaced with the position of Moths that is equivalent to the129
position of the particle but highly efficient to move solution towards optimal one. MFO directs the particles130
faster towards optimal value, reduces computational time. As we know that that PSO is a well-known algorithm131
that exploits the best possible solution for its unknown search space. So the combination of best characteristic132
(exploration with MFO and exploitation with PSO) guarantees to obtain the best possible optimal solution of133
the problem that also avoids local stagnation or local optima of the problem.134

A set of Hybrid PSO-MFO is the combination of separate PSO and MFO. Hybrid PSO-MFO merges the best135
strength of both PSO in exploitation and MFO in exploration phase towards the targeted optimum solution.1 1136
1 2 2 ( _) ( ) t t t t t t ij ij v wv c R Moth Pos X c R Gbest X + = + ? + ?(17)137

III.138

5 Optimal Power Flow Problem Formulation139

As specified before, OPF is the optimized problem of power flow that provides the optimum values of independent140
variables by optimizing a predefined objective function with respect to the operating bounds of the system [1].141
The OPF problem can be mathematically expressed as a non-linear constrained optimization problem as follows142
[1]: Minimize f(a,b) (18) Subject to s(a,b)=0(19)143

6 i. Control variables144

The control variables should be adjusted to fulfill the power flow equations. For the OPF problem, the set for145
control variables can be formulated as [1], [4]:2 1 1 1 [ ] ,146

, ,NTr NGen NGen NCom T G G G G C C P P V V Q b Q T T = ? ? ? ?(21)147
Where, G P = Real power output at the PV(Generator) buses excluding at the slack (Reference) bus.G V =148

Magnitude of Voltage at PV (Generator) buses. C Q = shunt VAR compensation.149
T = tap settings of the transformer.150
NGen, NTr, NCom= No. of generator units, No. of tap changing transformers and No. of shunt VAR151

compensation devices, respectively. The control variables are the decision variables of the power system which152
could be adjusted as per the requirement.153

7 ii. State variables154

There is a need of variables for all OPF formulations for the characterization of the Electrical Power Engineering155
state of the system. So, the state variables can be formulated as [1], [4]:1 1 1 1 ] [ , , , NLB NGen T l l L L G G156
G Nline P V V Q Q S S a = ? ? ?(22)157

Where,158
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14 A) IEEE 30-BUS TEST SYSTEM

8 b) Constraints159

There are two OPF constraints named inequality and equality constraints. These constraints are explained in160
the sections given below.161

9 i. Equality constraints162

The physical condition of the power system is described by the equality constraints of the system. These equality163
constraints are basically the power flow equations which can be explained as follows [1], [4].164

10 a. Real power constraints165

The real power constraints can be formulated as follows:[ ( ) ( )] 0 NB i j ij ij ij Di Gi J i ij P P V V G Cos B166
Sin ? ? = ? ? + = ? (23) b. Reactive power constraints [ ( ) ( )] 0 NB i j ij ij ij ij Di Gi J i Q Q V V G Cos B167
Sin ? ? = ? ? + = ?(24)168

Where,j ij i ? ? ? = ?169
is the phase angle of voltage between buses i and j.NB= total No. of buses, G P = real power output, G Q =170

reactive power output, ij ij ij Y G jB = +171
shows the susceptance and conductance between bus i and j, respectively, ij Y is the mutual admittance172

between buses I and j.173

11 ii. Inequality constraints174

The boundaries of power system devices together with the bounds created to surety system security are given by175
inequality constraints of the OPF [4], [5].176

12 a. Generator constraints177

For all generating units including the reference bus: voltage magnitude, real power and reactive power outputs178
should be constrained within its minimum and maximum bounds as given below [27]:, i i i upper l er G o G G179
w V V V ? ? i=1,?, NGen (25) i i i upper lower G G G P P P ? ? , i=1,?, NGen(26)i i i upper lower G G G Q180
Q Q ? ? , i=1,?, NGen (27)181

b. Transformer constraints Tap settings of transformer should be constrained inside their stated minimum182
and maximum bounds as follows [27]:i i i upper lower G G G T T T ? ? , i=1,?,NGen(28)183

c. Shunt VAR compensator constraints Shunt VAR compensation devices need to be constrained within its184
minimum and maximum bounds as given below [27]:i i i upper lower C GC C Q Q Q ? ? , i=1,?,NGen(29)185

d. Security constraints These comprise the limits of a magnitude of the voltage at PQ buses and loadings on186
the transmission line. Voltage for every PQ bus should be limited by their minimum and maximum operational187
bounds. Line flow over each line should not exceed its maximum loading limit. So, these limitations can be188
mathematically expressed as follows [27]:i i i lower upper L L L V V V ? ? , i=1,?,NGen (30) i i upper l l S S ?189
, i=1,?,Nline(31)190

The control variables are self-constraint. The inequality constrained of state variables comprises the magnitude191
of PQ bus voltage, active power production at reference bus, reactive power production and loadings on line may192
be encompassed into an objective function in terms of quadratic penalty terms. In which, the penalty factor is193
multiplied by the square of the indifference value of state variables and is included in the objective function and194
any impractical result achieved is declined [27].195

Penalty function may be mathematically formulated as follows:196
( )1 1 2 2 2 1 1 0 ( ) ( ) i i i i NLB NGen Nline aug P V L L G G Q S l l i i i lim lim max J J P P V V S S =197

= = = + ? ? + ? ? + ? + ? ? ? ? ?(32)198
Where, , , , The reactive power constraints can be formulated as follows: minimum limit lim U takings the199

value of that limit. This can be shown as follows [27]:P V Q S = ? ? ? ?200
; ;upper upper lim lower lower U U U U U U U = ? > ? < ? (33)201
IV.202

13 Application and Results203

The PSO-MFO technique has been implemented for the OPF solution for standard IEEE 30bus test system and204
for a number of cases with dissimilar objective functions. The used software program is written in MATLAB205
R2014b computing surroundings and used on a 2.60 GHz i5 PC with 4 GB RAM. In this work the HPSO-MFO206
population size is selected to be 40.207

14 a) IEEE 30-bus test system208

With the purpose of elucidating the strength of the suggested HPSO-MFO technique, it has been verified on the209
standard IEEE 30-bus test system as displays in fig. 2. The standard IEEE 30-bus test system selected in this210
work has the following features [6] In addition, generator cost coefficient data, the line data, bus data, and the211
upper and lower bounds for the control variables are specified in ??33].212
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In given test system, five diverse cases have been considered for various purposes and all the acquired outcomes213
are given in Tables 3, 5, 7, 9, 11. The very first column of this tables denotes the optimal values of control variables214
found where:215

-P G1 through P G6 and V G1 through V G6 signifies the power and voltages of generator 1 to generator 6.216
-T 4-12 , T 6-9 , T 6-10 and T 28-27 are the transformer tap settings comprised between buses 4-12, 6-9, 6-10217
and 28-27.-Q C10 , Q C12 , Q C15 , Q C17 , Q C20 , Q C21 , Q C23 , Q C24 and Q C29218

denote the shunt VAR compensators coupled at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. Further, fuel cost219
($/hr), real power losses (MW), reactive power losses (MVAR), voltage deviation and Lmax represent the total220
generation fuel cost of the system, the total real power losses, the total reactive power losses, the load voltages221
deviation from 1 and the stability index, respectively. Other particulars for these outcomes will be specified in222
the next sections.223

The control parameters for HPSO-MFO, MFO, PSO used in this problem are given in table 1.224
In table 1, no. of variables (dim) shows the six no. of generators used in the 30 bus system. It gives the225

optimization values for different cases as they depends on the decision variables. In all 5 cases, results are the226
average value obtained after 10 number of runs. The very common OPF objective that is generation fuel cost227
reduction is considered in the case 1. Therefore, the objective function Y indicates the complete fuel cost of total228
generating units and it is calculated by following equation [1]:1 ($ / ) NGen i i Y f hr = = ? (34)229

Where, i f is the total fuel cost of th i generator.230
i f , may be formulated as follow: 2 which displays that the results obtained by PSO-MFO are better than the231

other methods. The optimal values of control variables obtained by different algorithms for case 1 are specified232
in Table 3. By means of the same settings i.e. control variables boundaries, initial conditions and system data,233
the results achieved in case 1 with the PSO-MFO technique are compared to some other methods and it display234
that the total fuel cost is greatly reduced compared to the initial case [6]. Quantitatively, it is reduced from235
901.951$/hr to 799.056$/hr. Case 2: Voltage profile improvement Bus voltage is considered as most essential and236
important security and service excellence indices [6]. Here the goal is to reduce the fuel cost and increase voltage237
profile simultaneously by reducing the voltage deviation of PQ (load) buses from the unity 1.0 p.u.238

15 Fig. 3: Fuel cost variations with different algorithms239

Hence, the objective function may be formulated by following equation [4]:cost voltage deviation Y Y wY ? = +240
(36)241

Where, w is an appropriate weighting factor, to be chosen by the user to offer a weight or importance to each242
one of the two terms of the objective function. cos 1 NGen t i i Y f = = ? (37) _1 | 1.0 | NGen voltage deviation243
i i Y V = = ? ? (38)244

The variation of voltage deviation with different algorithms over iterations is sketched in fig. ??. It245
demonstrates that the suggested method has good convergence characteristics. The statistical values of voltage246
deviation obtained with different methods are shown in table 4 which display that the results obtained by PSO-247
MFO are better than the other methods excluding GSA method. The optimal values of control variables obtained248
by different algorithms for case 2 are specified in Table 5. By means of the same settings the results achieved249
in case 2 with the PSO-MFO technique are compared to some other methods and it display that the voltage250
deviation is greatly reduced compared to the initial case [6]. It has been made known that the voltage deviation251
is reduced from 1.1496 p.u. to 0.1056p.u. using PSO-MFO technique.GSA [2] gives better result than the HPSO-252
MFO method only in case of voltage deviation among five cases. Due to No Free Lunch (NFL) theorem proves253
that no one can propose an algorithm for solving all optimization problems. This means that the success of an254
algorithm in solving a specific set of problems does not guarantee solving all optimization problems with different255
type and nature. NFL makes this field of study highly active which results in enhancing current approaches256
and proposing new meta-heuristics every year. This also motivates our attempts to develop a new Hybrid meta-257
heuristic for solving OPF Problem. Case 3: Voltage stability enhancement Presently, the transmission systems258
are enforced to work nearby their safety bounds, because of cost-effective and environmental causes. One of the259
significant characteristics of the system is its capability to retain continuously tolerable bus voltages to each node260
beneath standard operational environments, next to the rise in load, as soon as the system is being affected by261
disturbance. The unoptimized control variables may cause increasing and unmanageable voltage drop causing262
a tremendous voltage collapse [6]. Hence, voltage stability is inviting ever more attention. By using various263
techniques to evaluate the margin of voltage stability, Glavitch and Kessel have introduced a voltage stability264
index called L-index depends on the viability of load flow equations for every node ??34]. The L-index of a265
bus shows the probability of voltage collapse circumstance for that particular bus. It differs between 0 and 1266
equivalent to zero load and voltage collapse, respectively.267

For the given system with NB, N Gen and NLB buses signifying the total no. of buses, the total no. of268
generator buses and the total no. of load buses, respectively. The buses can be distinct as PV (generator) buses269
at the head and PQ (load) buses at the tail as follows [4]:[ ] L L LL LG L bus G G GL GG G I V Y Y V Y I V270
Y Y V = = ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ?(39)271

Where, LL Y , LG Y , GL Y and GG Y are co-matrix of bus Y . The subsequent hybrid system of equations272
can be expressed as:[ ] L L LL LG L G G GL GG G H I V V V I H H I H H = = ? ? ? ? ? ?? ? ? ? ? ? ? ??273
? ? ? ? ? ? ?? ?(40)274
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20 CONCLUSION

Where matrix H is produced by the partially inverting of bus The matrix H is given by: [ ]1 LL LL LG LL275
LL GL LL GG GL LL LG Z Z Y H Z Y Y Z Y Y Z Y ? ? ? ? = = ? ? ? ? ?(41)276

Hence, the L-index denoted by j L of bus j is represented as follows:1 1 i j LG i j ji NGen v L H v = = ? ?277
j=1,2?,NL(42)278

Hence, the stability of the whole system is described by a global indicator max L which is given by [6], max279
max( )j L L = j=1,2?,NL(43)280

The system is more stable as the value of max L is lower.281
The voltage stability can be enhanced by reducing the value of voltage stability indicator L-index at every bus282

of the system. [6]. Thus, the objective function may be given as follows:cos __t voltage Stability Enhancement283
Y Y wY = +(44)284

Where,cos 1 NGen t i i Y f = = ? (45) max __voltage stability enhancement Y L = (46)285
The variation of the Lmax index with different algorithms over iterations is presented in fig. 4. The statistical286

results obtained with different methods are shown in table 6 which display that PSO-MFO method gives better287
results than the other methods. The optimal values of control variables obtained by different algorithms for case288
3 are given in Table 7. After applying the PSO-MFO technique, it appears from Table 7 that the value of Lmax289
is considerably decreased in this case compared to initial [6] from 0.1723 to 0.1126. Thus, the distance from290
breakdown point is improved.291

16 Case 4: Minimization of active power transmission losses292

In the case 4 the Optimal Power Flow objective is to reduce the active power transmission losses, which can be293
represented by power balance equation as follows [6]: 9. By means of the same settings the results achieved in294
case 4 with the PSO-MFO technique are compared to some other methods and it display that the real power295
transmission losses are greatly reduced compared to the initial case [6]296

17 Case 5: Minimization of reactive power transmission losses297

The accessibility of reactive power is the main point for static system voltage stability margin to support the298
transmission of active power from the source to sinks [6].299

Thus, the minimization of VAR losses are given by the following expression:1 1 1 i Gi Di NGen NGen NGen i300
i i J Q Q Q = = = = = ? ? ? ?(48)301

It is notable that the reactive power losses are not essentially positive. The variation of reactive power losses302
with different methods shown in fig. 6. It demonstrates that the suggested method has good convergence303
characteristics. The statistical values of reactive power losses obtained with different methods are shown in table304
10 which display that the results obtained by hybrid PSO-MFO method are better than the other methods.305
The optimal values of control variables obtained by different algorithms for case 5 are given in Table 11. It is306
shown that the reactive power losses are greatly reduced compared to the initial case [6] from -4.6066 MVAR307
to -25.335MVAR using hybrid PSO-MFO method. Table 12 show the comparison of elapsed time taken by the308
different methods to optimize the different objective cases. The comparison shows that the time taken by all309
three algorithms is not same which indicates the different evaluation strategy of different methods. V.310

18 Robustness Test311

In order to check the robustness of the HPSO-MFO for solving continues Optimal Power Flow problems, 10 times312
trials with various search agents for cases Case 1, Case 2, Case 3, Case 4 and Case 5. Table 2, Table 3, Table 4,313
Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11 presents the statistical results achieved by the314
HPSO-MFO, MFO and PSO algorithms for OPF problems for various cases. From these tables, it is clear that315
the optimum objective function values obtained by HPSO-MFO are near to every trial and minimum compare316
to MFO and PSO algorithms. It proves the robustness of hybrid PSO-MFO algorithm (HPSO-MFO) to solve317
OPF problem.318

19 VI.319

20 Conclusion320

Particle Swarm Optimization-Moth Flame Optimizer (PSO-MFO), Moth Flame Optimizer and Particle Swarm321
Optimization Algorithm are successfully applied to standard IEEE 30-bus test systems to solve the optimal power322
flow problem for the various types of cases. The results give the optimal settings of control variables with different323
methods which demonstrate the effectiveness of the different techniques. The solutions obtained from the hybrid324
PSO-MFO method approach has good convergence characteristics and gives the better results compared to MFO325
and PSO methods which confirm the effectiveness of proposed algorithm.326
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Figure 1: Fig. 1 :

VII. 1 2 3 4 5 6 7 8 9 10327

1Year 2017 F Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer
2G P = Real power generation at reference bus.© 2017 Global Journals Inc. (US)Global Journal of Researches
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3© 2017 Global Journals Inc. (US)
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5Year 2017 F Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer
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7Year 2017 F Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer
8Year 2017 F Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer
9Year 2017 F Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer

10Year 2017 F Optimal Power Flow using a hybrid Particle Swarm Optimizer with Moth Flame Optimizer
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Figure 6: Fig. 2 :
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Figure 7: costY

Year 2017
V Version I
of Researches in Engineering ( ) Volume XVII Issue F
Global Journal

[Note: penalty factors lim U = Boundary value of the state variable U.If U is greater than the maximum limit,
lim U takings the value of this one, if U is lesser than the]

Figure 8:

1

Sr.
No.

Parameters Value

1 Population (No. of Search agents) (N) 40
2 Maximum iterations count (t) 500
3 No. of Variables (dim) 25
4 Random Number [0,1]
5 source acceleration coefficient (??_1, ??_2) 2

Figure 9: Table 1 :
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2

Method Fuel Cost ($/hr) Method Description
HPSO-
MFO

799.056 Hybrid Particle Swarm Optimization-Moth Flame Opti-
mizer

MFO 799.072 Moth Flame Optimizer
PSO 799.704 Particle Swarm Optimization
DE 799.289 Differential Evolution [15]
BHBO 799.921 Black Hole-Based Optimization [6]

Figure 10: Table 2 :

3

Control Vari-
able

Min Max Initial HPSO-MFO MFO PSO

P G1 50 200 99.2230 178.133 177.055 177.105
P G2 20 80 80 48.956 48.698 48.748
P G5 15 50 50 21.385 21.304 21.318
P G8 10 35 20 21.706 21.084 20.986
P G11 10 30 20 10.000 11.883 12.049
P G13 12 40 20 12.000 12.000 12.000
V G1 0.95 1.1 1.05 1.100 1.100 1.100
V G2 0.95 1.1 1.04 1.088 1.088 1.088
V G5 0.95 1.1 1.01 1.062 1.062 1.061
V G8 0.95 1.1 1.01 1.070 1.069 1.070
V G11 0.95 1.1 1.05 1.100 1.100 1.100
V G13 0.95 1.1 1.05 1.100 1.100 1.100
T 4-12 0 1.1 1.078 0.939 1.044 0.976
T 6-9 0 1.1 1.069 1.100 0.900 0.975

Figure 11: Table 3 :

4

Method Voltage Devia-
tion (p.u)

Method Description

HPSO-
MFO

0.1056 Hybrid Particle Swarm Optimization-Moth Flame Opti-
mizer

MFO 0.1065 Moth Flame Optimizer
PSO 0.1506 Particle Swarm Optimization
GSA 0.0932 Gravitational Search Algorithm [2]
DE 0.1357 Differential Evolution [15]
BHBO 0.1262 Black Hole-Based Optimization [6]

Figure 12: Table 4 :
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5

Control Vari-
able

Min Max Initial HPSO-MFO MFO PSO

P G1 50 200 99.2230 177.650 180.212 175.922
P G2 20 80 80 49.092 49.584 46.389
P G5 15 50 50 15.000 15.000 21.597
P G8 10 35 20 10.000 24.349 19.396
P G11 10 30 20 30.000 12.657 17.656
P G13 12 40 20 12.000 12.000 12.000
V G1 0.95 1.1 1.05 1.033 1.033 1.047
V G2 0.95 1.1 1.04 1.017 1.017 1.034
V G5 0.95 1.1 1.01 1.015 1.005 0.999
V G8 0.95 1.1 1.01 0.997 0.999 1.005
V G11 0.95 1.1 1.05 1.047 1.071 0.999
V G13 0.95 1.1 1.05 1.016 1.052 1.018
T 4-12 0 1.1 1.078 1.065 1.100 0.954
T 6-9 0 1.1 1.069 0.914 0.900 0.969
T 6-10 0 1.1 1.032 0.973 1.072 0.989

Figure 13: Table 5 :

6

Method L max Method Description
HPSO-
MFO

0.1126 Hybrid Particle Swarm Optimization-Moth Flame Optimizer

MFO 0.1138 Moth Flame Optimizer
PSO 0.1180 Particle Swarm Optimization
GSA 0.1162 Gravitational Search Algorithm [2]
DE 0.1219 Differential Evolution [15]
BHBO 0.1167 Black Hole-Based Optimization [6]

Figure 14: Table 6 :

7

Control Vari-
able

Min Max Initial HPSO-MFO MFO PSO

P G1 50 200 99.2230 182.308 177.299 158.331
P G2 20 80 80 45.360 48.792 49.050
P G5 15 50 50 21.109 21.316 18.956
P G8 10 35 20 21.557 20.351 31.224
P G11 10 30 20 10.000 12.370 15.906
P G13 12 40 20 12.000 12.012 17.801
V G1 0.95 1.1 1.05 1.100 1.100 1.098

Figure 15: Table 7 :
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Method Active Power
Loss (MW)

Method Description

HPSO-
MFO

2.831 Hybrid Particle Swarm Optimization-Moth Flame Opti-
mizer

MFO 2.853 Moth Flame Optimizer
PSO 3.026 Particle Swarm Optimization
BHBO 3.503 Black Hole-Based Optimization [6]

Figure 16: Table 8 :

9

Control
Variable

Min Max Initial HPSO-MFO MFO PSO

P G1 50 200 99.2230 51.269 51.253 51.427
P G2 20 80 80 80.000 80.000 80.000
P G5 15 50 50 50.000 50.000 50.000
P G8 10 35 20 35.000 35.000 35.000
P G11 10 30 20 30.000 30.000 30.000
P G13 12 40 20 40.000 40.000 40.000
V G1 0.95 1.1 1.05 1.100 1.100 1.100
V G2 0.95 1.1 1.04 1.100 1.098 1.100
V G5 0.95 1.1 1.01 1.082 1.080 1.083
V G8 0.95 1.1 1.01 1.086 1.087 1.090
V G11 0.95 1.1 1.05 1.100 1.100 1.100
V G13 0.95 1.1 1.05 1.100 1.100 1.100
T 4-12 0 1.1 1.078 1.044 1.056 0.977
T 6-9 0 1.1 1.069 0.901 0.900 1.100
T 6-10 0 1.1 1.032 0.993 0.982 1.100
T 28-27 0 1.1 1.068 0.987 0.973 0.998
QC 10 0 5 0 5.000 5.000 4.065
QC 12 0 5 0 4.570 5.000 0.000
QC 15 0 5 0 4.969 3.070 5.000
QC 17 0 5 0 4.942 5.000 5.000
QC 20 0 5 0 4.337 5.000 0.000
QC 21 0 5 0 5.000 5.000 5.000
QC 23 0 5 0 5.000 5.000 5.000
QC 24 0 5 0 5.000 5.000 0.000
QC 29 0 5 0 2.412 2.508 0.000
PLoss (MW) - - 5.8219 2.831 2.853 3.026

Figure 17: Table 9 :
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10

Method Reactive Power
Loss (MVAR)

Method Description

HPSO-
MFO

-25.335 Hybrid Particle Swarm Optimization-Moth Flame
Optimizer

MFO -25.204 Moth Flame Optimizer
PSO -23.407 Particle Swarm Optimization
BHBO -20.152 Black Hole-Based Optimization [6]

Figure 18: Table 10 :

12

Case
No.

Elapsed Time (Seconds)

MFO PSO HPSO-MFO
1 166.2097 250.2674 211.7915
2 191.8238 266.5375 229.6873
3 196.6275 270.3358 243.2919
4 161.6395 248.8739 259.9731
5 173.5987 253.3971 209.4387

Figure 19: Table 12 :
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