Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

1 2	Analysis of Pre-Stressed Pseudo Box Bridge using Inverted-T Girder and Splicing Technique
3	K.M Bipul Shahriar ¹ and Sakia $Azam^2$
4	¹ University of Technology Sydney
5	Received: 15 December 2013 Accepted: 31 December 2013 Published: 15 January 2014

7 Abstract

8 The paper is for the structural analysis of continuous simply supported pre-stressed

⁹ inverted-T girder using splicing technique. This paper represents variation of inflection points

¹⁰ (point of contra flexure) for different variable loading conditions such as superimposed dead

¹¹ load, lane load, HS-20 truck load etc. The load (live load) for which inflection point changes

12 its location greatly, amount of changes etc. also noticed and amount determined with several

¹³ trials in this research. Finite element analysis method applied in this case for maximum

¹⁴ bending and shear. The effect of false box action considered and found that due to false box

action the reduction of bending stress shows lighter section of inverted-T girder. Without

¹⁶ considering box action it shows inverted T-girder depth requires greater depth whereas false

17 box girder action reduces its depth extensively.

18

19 Index terms— superimposed dead load, lane load, HS-20 truck load, location greatly, amount of changes 20 etc.

²¹ 1 Introduction a) General Concept

arge bridge with long span and vertical clearance for navigation is required in some places. Prestressed concrete girder bridge is constructed where river is deep and more navigation clearance is required. Post tensioned box girder is the latest system for long span bridge for which modern construction technologies as well as huge construction fund are required.

The box girder normally comprises either prestressed concrete, structural steel, or a composite of steel and reinforced concrete. The box is typically rectangular or trapezoidal in cross-section. Box girder bridges are commonly used for highway flyovers and for modern elevated structures of light rail transport. Although normally the box girder bridge is a form of beam bridge, box girders may also be used on cable-stayed bridges and other forms. This study is carried out with the intension of finding some other alternating as can be used as compatible

31 to post tensioned box Girder Bridge.

³² 2 b) Objective of the Study

The objective of the study is to analysis of a pseudo box girder bridge of a 750m long multiple span (50m each span) using on 2 lane highway. pseudo box section as can be used for long span bridge.

³⁵ 3 d) Approach of the Study

³⁶ The approach of structural analysis is made by STAAD pro 2006, which is based on numerical finite element grid

analysis theory. The study selected suitable section of inverted-T girders of two different lengths of 28m and 22m

long which are to be applied for making continuous simply supported 750m long bridge.

39 **4** II.

40 5 Modeling and Analysis

41 6 a) Introduction

The bridge was analyzed as considering simply supported multi -span RCC deck slab supported on pre-stressed post tensioned concrete inverted-T girder. The bridge length is 750m comprising of 15 number spans (50m each). The bridge is analyzed as continuous multiple spans with pre-stress concrete inverse-T girder. Fixed permanent loading were analyzed to find out the inflection points. The change of inflection point was determined by different live load combinations. STAAD-pro software and AASHTO-2003 were used as design tools for numerical grid analysis and loading criteria respectively.

48 7 Results and Discussion

49 Structural analysis of 750m continuous girder has been performed by using STAAD pro 2006 to find out inflection 50 points for splicing which deals with the finite element analysis. We have compared the analysis result of single 51 inverted-T girder, transverse box section and longitudinal box section to find out the depth and thickness of box 52 Girder Bridge for different loadings to join the girder successfully at site. After analysis using STAAD Pro and 53 checking deflection for different sections, finally we can conclude that different sections can be used for making 54 continuous span by the technique of splicing at the erection site.

55 8 Relation of Permanent Loading and Inflection Points

⁵⁶ G-1 m Z-1 m G-2 m Z-2 m G-3 m Z-3 m G-4 m Z-4 m G-5 m Z-5 m G-6 m Z-6 m G-

The inflection point due to self weight and superimposed dead load was checked by different bridge live load cases. After doing the analysis for different load cases, we found that inflection points were varied due to different loading position. The variation of changed the location of inflection point. From the above findings the bending moment of bridge is reduced gradually by finite element plate analysis. If we use false box technique then we get the reducing bending stress benefit and reduced bending stress can give reduce bending moment which gives the lighter section. For this reason, deflection due to dead load is small and the live load deflection is reduced by pre-stressing of cross girder.

The pseudo box (false box) and splicing technique can be effectively practiced in the world where the box girder is most costly. Considering the socio-economic condition this technique for bridge construction is economic.

⁶⁶ 9 c) Merits of Pseudo Box Bridge Using Inverted-T Girder and ⁶⁷ Spliced Technique

There are two types of benefit using splice and pseudo box girder. These are i. Construction Benefit Where scaffolding for long time is not permitted then pseudo Box Bridge and splicing technique can be used for construction of bridges which is less time consuming at site work. That's why less number of workers will be required. Spliced girder segments are smaller than a full girder having a length of 50m. Also handling stress of the inverted-T girder is small than the actual box section, which can be transported easily from the factory

73 to site and also easier to erect to their final location. We can reduce traffic hazards during the construction.

74 10 ii. Structural Benefit

To tell about the structural benefits about splicing technique at first we can highlight about the section of the girder. For false box technique bending stress is reduced, by the reduction of bending stress the bending moment is also reduced. Reduced bending moment can give reduced section which is lighter. For this reason, deflection due to dead load is small and the live load deflection is reduced by pre-stressing of cross girder.

iii. Demerits of Pseudo Box Bridge Using Inverted-T Girder and Spliced Technique Principle demerits of using
continuous girder by inverted-T girder and splicing technique are given below-? We assumed all supports are not
allowed to be settled. This is uncertain and need to be researched more about soil settlement. ? Experienced
and skilled workers are needed but not available in our country. ? Analysis should be done carefully to detect the
inverted-T section and spliced zone. ? As it is post-tensioned pre-stressing method accuracy must be maintained.
IV.

85 11 Conclusion

The analysis of 750m continuous girder has been performed for two lanes 15 spans of 50m each. Objective is the beneficial using of pre-cast girder for long span bridges by pre-stressed pseudo Box Bridge using inverted-T girder and splicing technique. This analysis is done only for the vertical loadings. Analysis is fully performed by the STAADpro 2006 software to find out the moment, shear, and deflection of the structure specially the inflection zone for joining the inverted-T girders actually. With some limitations pre-stressed pseudo box using inverted-T girder and splicing technique can be applied in practical field. This technique for bridge and flyover construction is more economic and less time consuming. We hope that for our country pseudo box using inverted-T girder

- and splicing technique will be applied and practiced. To get the benefits both construction and structural this 93
- technique will be helpful. Bangladesh is a land of river, agricultural and flood affected country. Navigation 94 clearance and hydraulic criteria (100year flood discharge) must be counted. That's why this technique should be practiced by the engineers 1^{2} 95
- practiced by the engineers.

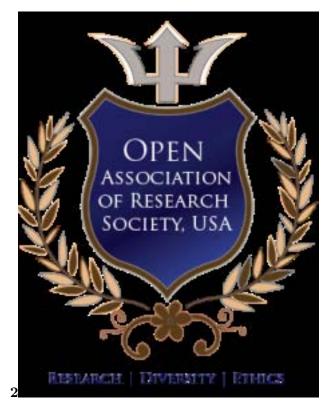


Figure 1: Fig 2 :

96

 $^{^{1}}$ © 2014 Global Journals Inc. (US)

 $^{^2 \}mathrm{Analysis}$ of Pre-Stressed Pseudo Box Bridge using Inverted-T Girder and Splicing Technique $^\odot$ 2014 Global Journals Inc. (US)

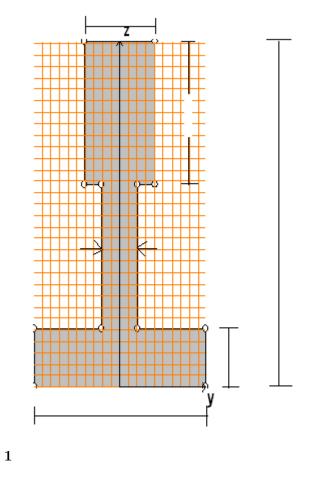


Figure 2: Figure 1 :

-	1	
	I	
-	•	

Bea	m			Beam results						
	Moments (ma	x)			SI	hear			Inflection po	int
	, ,	(kN-m)			(k	κN)			(m) from left	5
		· · ·				,			support	
	Left	Mid point	Right	Left	Μ	ſid	Right	??		
	support		support	support			suppo	rt		
G1	4698.32 -2349	.149	4698.32	563.796	0.	.001	563.79	0.102	10.57	39.43
G2	4698.28 -2349	.116	4698.36	563.793 -0.002	563.79	02		0.102	10.57	39.43
G3	4698.27 -2349	.139	4698.33	563.794 -0.001	563.79	95		0.102	10.57	39.43
		Table 2 : Combi	nation-1	(SW+SDL) for	Interio	or G	lirder			
Bea	ım			Beam results						
		Moments (max)			SI	hear		Deflectio	of Inflection po	int
		(kN-m)			(k	κN)		(Max.)	(m) from left	5
								(m)	support	
	Left node	Mid point Right	node	Left	Μ	ſid	Right	??		
				support			suppor	rt		
G1	4339.979	-2169.982	4339.951	1520.796 0.001			-	0.094	10.57	39.43
							520.79	5		
G2	4339.949	-2169.952	4339.945	5520.793 -0.001 -	-520.79	93		0.094	10.57	39.43
G3	4339.938	-2169.972	4339.965	5520.794 -0.001 -	-520.79	95		0.094	10.57	39.43

Figure 3: Table 1 :

Beam				Beam res	sults	Deflection	(Max.) (m)	Year 2014 E
		Moments (max) (kN-m)			Shear (kN)	Deflection	(Max.) (m)	Inflection point (m) from left support
	Left node	Mid point	Right node	Left	Mid	Right	??	
G1	5167.06	67-2833.522	5167.03	support 8600.046	- 39.999	support -600.045	0.119	10.78 39.22
G2	5167.03	31-2833.485	5167.02	8600.043	- 40.002	-600.043	0.119	10.70 39.22
G3	5167.02	20-2833.509	5167.05	0600.044	- 40.001	-600.045	0.119	10.78 39.22
Table $4:C$	Combinat	ion-3 self weight (+ Concentrated	,		sed dead	· · · · · ·) + Lane	Load (UDL)
Beam		+ Concentrated	LUau III	Beam res		le Diluge		
		Moments (max)			Shear		Deflectio	onInflection
		(kN-m)			(kN)		(Max.) (m)	point (m) from left support
	Left node	Mid point	Right node	Left	Mid	Right	??	
C 1	100-01		100-00	support	0.001	support	0.101	
G1 C2		55-2333.522		5560.046	0.001	560.045	0.104	10.57 39.43
G2	4007.03	32-2333.489	4067.03	0560.043	- 0.002	560.056	0.104	10.57 39.43
G3	4667.02	21-2333.512	4667.05	2560.044	- 0.001	560.062	0.104	10.57 39.43

 $[Note: \ Combination-2 \ self \ weight \ (SW) \ + \ Superimposed \ dead \ load \ (SDL) \ + \ Lane \ Load \ (UDL) \ + \ Concentrated \ Load \ in \ Mid \ Support \ of \ the \ Bridge]$

Figure 4: Table 3 :

3

$\mathbf{5}$

Bea	m			Beam results			
		$\begin{array}{c} \text{Moments} \\ (\max) \end{array}$			Shear		Inflection point
		(kN-m)			(kN)		(m) from left support
	Left node N	Mid point	Right	Left	Mid	Right	??
			node	support		support	-
G1	5311.783	-	5380.629 538	3.668 -21.377		642.01	$0.088 \ 10.14 \ 37.95$
		2154.362					
G2	5380.639	-	5434.46	643.930 -17.41	1 583.0	21	$0.170\ 10.15\ 40.04$
		3639.122					
G3	5434.402	-	5434.53	583.033	22.988	8583.11	$0.087 \ 12.16 \ 39.89$
		2140.849					

Figure 5: Table 5 :

							Deflection (max) (m)	i	
Beam				Beam rest	ults				
		Moments (max) (kN-m)			Shear (kN)		Deflection (max) (m)	Inflection point (m) fi left support	
	Left node	Mid point	Right node	Left	Mid	Right	??		
				support		support	,		
G1	5669.964	-3246.013	5931.432	2639.779	-21.562	658.11	0.135	10.97	38.97
G2	5931.422	-3.265	5277.88	658.076	-3.265	578.41	0.152	11.12	40.08
G3	5277.897	-2180.143	5277.90	0578.344	18.299	578.52	0.091	11.84	39.79
Table 7 : Con	nbination-	6 self weight (SW)) + Supe	rimposed	dead load	(SDL) +	- Lane loa	d (UDL)	
		+ HS 20-44 Truc	k Loadin	ig at Cente	er of All S	pan			
Beam				Beam rest	ults				
		Moments (max)			Shear		Deflection	Inflection	
		(kN-m)			(kN)		(\max)	point (m) f	rom
							(m)	left support	t
	Left node	Mid point	Right	Left	Mid	Right	??		
			node	support		support			
G1	5739.010	-3280.833	5792.63	643.933	-17.408 6	45.451	0.138	11.03	39.20
G2	5792.739	-3267.294	5643.85	1645.541	-15.800 6	43.851	0.137	11.12	39.22
G3	5643.931	-3253.819	5643.92	643.931	-17.410 6	43.931	0.135	11.10	39.13
Table 8 : Con	nbination-	7 self weight (SW)) + Supe	rimposed o	dead load	(SDL) +	- Lane loa	d (UDL)	
		+ HS 20-44 truck	k loading	at First S	upport of	Interior	Span		
Beam				Beam rest	ults				
	Moment	s (max)			Shear		Deflection	Inflection	
		(kN-m)			(kN)		(\max)	point (m) f	rom
							(m)	left support	t
	Left node	Mid point	Right	Left	Mid	Right	??		
			node	support		support	,		
G1	5395.070	-2385.671	4847.66	1708.663	-10.774	633.131	0.108	9.92	39.12
G2	4847.678	-2339.665	4863.51	2633.028	-6.713	630.891	0.105	10.24	39.16
G3	4863.617	-2392.653	4863.65	630.798	-2.239	630.992	0.109	10.28	39.52

Figure 6: Table 6 :

11 CONCLUSION

- 97 [Journal of Engineering Mechanics (2001)], Journal of Engineering Mechanics January, 2001. 127 (1).
- 98 [Lin] Design of pre-stressed concrete structures, T Y Lin . p. 218.
- 99 [Lin] Design of pre-stressed concrete structures, T Y Lin . p. 219.
- 100 [Nawy ()] Pre-stressed Concrete, A fundamental Approach, Edwad G Nawy . http://www.pci.org/view_
- 101 file.cfm?file=SG_92.pdf6 2000. New Jersey: Prentice Hall. (3 rd edition)