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Absiract- This paper describes an algorithm for solving a
certain class of bi-criteria multistage transportation problems
with transshipment (BMTSP). A several bi-criteria multistage
transportation problem with transshipment are formulated. The
presented algorithm is mainly based on application of the
methods of solving bi-criteria single stage transportation
problems, utilizing available decomposition techniques for
solving large-scale linear programming problems, and the
methods of treating the transshipment problems. The
mathematical formulation of the presented class does not
affect the special structure of the transshipment problem for
each of the individual stages. An illustrative example is
introduced to validate that the implementation of the algorithm.

Keywords:  large  scale  transportation  problem,
transshipment  problem,  multi-objective,  decision
making, decomposition  technique of  linear
programming.

. INTRODUCTION

hen shipments go directly from a supply point
VVto a demand point, i.e. shipments do not take

place between origins or between destinations
nor from destinations to origins, it is called a classical
transportation problem. In many real life situations,
shipments are allowed between supply points or
between demand points. There are many points (called
transshipment points) through which goods can be
transshipped on their journey from a supply point to a
demand point. Shipping problems with any or all of
these characteristics are considered as transshipment
problems. It was first introduced by Orden (1965) [1] in
which he introduced an extension of the original
transportation problem to include the possibility of
transshipment.  The  problem  of  determining
simultaneously the flow of primary products through
processors to the market of final products has been
formulated alternatively as a transshipment model by
multi-regional, multi-product, and multi-plant problem
formulated in the form of general linear programming
model has been proposed by Judge et al (1965) [4].
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Later, various alternative formulations of the
transshipment problem within the framework of the
transportation model that permits solution of problems
of the type discussed by King and Logan without the
need for subtraction of artificial variables were
discussed by Hurt and Tramel (1965) [5]. On the other
hand, Grag and Prakash (1985) [6] studied time
minimizing transshipment problem. Then dynamic
transshipment problem was studied by Herer and Tzur
(2001) [7]. Ozdemir (2006) studied Multi location
transshipment problem with capacitated production and
lost sales afterwards [8]. Furthermore, Osman et al
(1984) [9] introduced an algorithm for solving bi-criteria
multistage transportation problems.

Recently, Khurana et al (2011) [10] studied a
transshipment problem with mixed constraints. He
introduced an algorithm for solving time minimizing
capacitated transshipment problem [11]. Abo-elnaga et
al (2012) [12] introduced a trust region globalization
strategy to solve multi-objective  transportation,
assignment, and transshipment problems. Khurana
(2013) [13] introduced a Multi-index fixed charge
bi-criterion transshipment problem. Rajendran et al [14]
(2012) presented A new method namely, splitting
method, to solve fully interval transshipment problems.
Zaki et al [15] (2012) used the genetic algorithm for
solving transportation, assignment, and transshipment
problems. Ojha et al [16] (2011) formulated single and
multi-objective transportation models with fuzzy relations
under the fuzzy logic. Saraj et al [17] (2010) solved the
multi objective transportation problem (MOTP) under
fuzziness using interval numbers. Abd El-Wahed [18]
(2001) presented a multi-objective transportation
problem under fuzziness. Das et al [19] (1999)
introduced a multi-objective transportation problem with
interval cost, source and destination parameters.

In this paper a formulation of different structures
of bi-criteria large-scale transshipment problems and an
algorithm for solving a class of them, which can be
solved using the decomposition technique of linear
programming by utilizing the special nature of
transshipment problems, is presented. The new
algorithm determines the points of the non-dominated
set in the objective space. The method consists of
solving the same multistage transshipment problem
repeatedly but with different objectives and each
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iteration gives either new non-dominated extreme point
or changes the direction of search in the objective
space. An illustrative example is presented in this paper.

1. FORMULATION OF BI-CRITERIA
MULTISTAGE TRANSSHIPMENT
PROBLEMS

The formulation of different bi-criteria multistage
transportation problems with transshipment presented in
this paper covers several real situations as shown in the
following cases.

a) Bi-Criteria Multistage Transportation Problem with
transshipment of the First Kind (BMTSP 1)

This case represents multistage transshipment
problems without any restrictions on intermediate
stagbs In order to develop a mathematical formulation
of the problems, it is assumed that the availabilities are
"aj", where j= 1, 2, 3, .n and "n" is the number of
sources and destinations. Where as the requirements
are "o, =1, 2, 3, ....., n. The minimum transportation
costs and deteriorations from i to j are "cy ","d i " where |
and j= 1, 2, 3, ...., n. X denotes the quantity shipped
from i to j; and "xj ;" is the neat amount transshipped
through point j where x i = 0. Then the problem takes

the form:
n n
Min.z, =>"> c;x;

i=1 j=1

Z - szu ij

i=1 j=1

Where ¢; = 0 for the quantity shipped from
the source "Si" to itself and from destination "Dj" to itself:.

n
D X —X
i=l

=a;,]=12,..,n

i#]
n
D> % =% =b;, i=12,...n.
i=1
i#]
Xij >0 forall i, j.
b) Bi-criteria Multistage  Transportation  Problem

withTransshipment of the Second Kind (BMTSP 2):
This case represents bi-criteria multistage
transshipment problems in which the transportation at
any stage is independent of the transportation of the
other stages. In order to obtain the mathematical
formulation of the problem which represents this case, it
is assumed that for k" stage, k=12.3,...N. The

oo s

availabilities are: (ajk), j =1,2,3,..0 .0,

is the number of sources and destinations at the k"
. 1 . k -

stage; the requirements are: (bjk ) J =1,2,3,..0, the
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transportation costs and deteriorations are Cit i and

k

i, wherei= 1.2, 3, ., nk: jk=1,2, 3, ., nk. X",

Ik
denotes the quantity shipped from i, to ji and X;(j
is the net amount transshipped through point j,,

k
kaZO.

Then the problem takes the form:
M My
ik kK
Mln'zl = Z Zcikjk Xikjk
i =1 ji=1

N Ny

ZZ i Ji 'klk

iy =1, =1
Where ci';jk =( for the quantity shipped from

the source (S) to itself and from the destination (D) to
itself as foIIows-

ZX Qe

'k¢]k

Z X'k Jk Jka

i =1
i Ji

x;j> 0 for all iy, ji.

kak —ajk,Jk 1,2,...,Nn.
k -
=b; s Je=12,...n.

and the minimum transportation cost is given by:

MinZ = Minz*

c) Bi-Criteria Multistage Transportation Problem With
Transshipment of the Third Kind (BMTSP 3):

This case represents bi-criteria multistage
transshipment  problems  with some  additional
transportation restrictions on the intermediate stages
which does not affect the transshipment problem
formulation at each stage. The mathematical formulation
of the problem representing this case is given as:

nom Ny

Min. Z chl I X'1J1 +.. +ch'klk i Jk BT

i=1 j=1 i =1 ji =1

Ny Ny

et Z zci':jN Xi’:jN

in=1jy=1

noon M Ny
_ 1l Kook
22 _sziljlxiljl +"'+szikikxikjk +

=1 j=1 i =1 ji =1

ny Ny . "
ot Z ZdiNjN XiNjN

iy=1jy=l



k k .
Where Cij and d;; = 0 for the quantity

k
shipped from the source Sik to itself and from the

k
destination Djk toitsel: k =1,2,..., N

] _ Al HE
lel'l a 1111 - ail’ b= 1’2""

>,

=b; ,j, =12,...,n,

Ny
1
inljl JlJ

ZXJka Jkl

i = Ji
i =1

lekjk I d

i # Ji
i =1

k -
=a;, )y =12,..,n,

=b , j =12,...n,

—_aN 7 _
Z inin JNJN _ajN’JN _1’2""’nN
in#Jn
iy =1
Ny
N N _WN
_ZXiNjN _XijN _ij’JN _1’2""’nN
IN# N
iy =1
k k+1 _
Frk( i 1lk1’ 'ka ik+]jk+l)_ ’
k
> >
1Jl 0’ 2 'J _O X _O
Forall 1.l seeeslys Jioeees Jsees Ins
where: F .k=12,.,N  are linear functions

representing the additional transportation restrictions
and r, is the number of this linear
functions at the k™ stage.

d) Bi-Criteria Multistage Transportation Problem with
transshipment of the Fourth Kind (BMTSP 4)

This case represents bi-criteria  multistage
transshipment problems in which the difference between
the input and output transportation commodity is known
at the sources (destinations) of each intermediate stage.
The assumed transportation restrictions in this case
affect the transshipment formulation of each individual
stage.

The mathematical formulation of the problem
representing this case is given as:

l
Min.Z, ZZCIJ Xllh te +ZZCIka i T

i=lj= i=1 jy =1
Ny Ny
N N
'"+chiNjN XiNjN
in=l jn =1
nom ) | N N ‘ ‘
:szi]jlxiljl +"'+zzdik1kxikjk +
=1 j=1 =1 -1
Ny
+sz|N]N inJn
iy =l jy=l

Where (:i"j and dikj: 0 for the quantity shipped
k Jk k Jk

to itself and from the destination
k
D toitself k=1,2,...,N

n;
1 1
2 X5~ X5,

k
from the source Sik

l -
=a;,) = L2,...,n,

i)
i, =i

N
Z i J|Jl _( Z jay Jsz JI Jl nl; J2 = 1’2"”n2
i %] 'z*Jz
=1, i,=1

k-1 = _ i

. |k IJk 1 Jk 1lk 1 _(leklk - Jka ka 1’Jk’1 71’2""’nk*1’ Jk 71’2""nk
:k:H‘Jkl 'k“Jk

N xN N-1

ZXIN nar JN lJN 1 ( ZXJN in JNJN ina?
INC1# N in#Jn
o=l iy=1

Ina =L2,..,n 5 0y =12,...0

Ny

N N _WN

2 X~ X =By e =120y
in#Jn
iy =1

k ..
Xikjk >0 forallig ji; k=1,2,...,N

(BMTSP 1) is solved as a bi-criteria single stage
transshipment problem.

(BMTSP 2) can be solved as N single stage bi-
criteria transshipment problems and the minimum value
of the total transport costs and deteriorations are
obtained as the sum of the minimum transportation
costs and deteriorations for each individual stage.

(BMTSP 3) can be solved using the
decomposition technique utilizing the special nature of
transshipment problems. The next section will be
devoted to the solution of this type of problems.

(BMTSP 4) is solved using any method for
solving bi-criteria linear programming problems.
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e) An Algorithm for Solving BMTSP 3

The decomposition technique of
programming can be used to
solve the bi-criteria multistage transshipment problems
especially for the BMTSP 3) type. This type of bi-criteria
multistage transshipment problems decomposed into
[2,3,5,8]:

e Sub problems corresponding to every stage.

e A master program which ties together the sub
problems.

Let:

D be the matrix consisting of the coefficients of k™ sub-
problem constraints.

A* the matrix consisting of the coefficients of k™ stage
tie-in constraints.

b the vector of constant coefficients in the tie-in
constraints.

linear

b the vector consisting of the availabilities and
requirements of

K" sub-problem.
R, the matrix consisting of the first m, columns of B, m°

denotes the number of elements of b, B be the current
basis matrix.

ck the vector of first objective coefficients of k™ sub-
problem .

d“ the vector of second objective coefficients of k™ sub-
problem .

cg the corresponding vector of
coefficients.

N the number of sub- problems.

basic variables

The following section presents an algorithm for
determining all non dominated extreme points for the
(BMTSP 3) model from which the solution for (BMTSP 1)
and (BMTSP 2) models can be deduced from it as
special cases.

Assuming that independent constraints are:

D¥ k= 1.2,...N is the technological matrix of the kth
stage activity. D* is (m, + n,) * (m, + n,) matrix, N is the
number of stages, mk is the number of sources at k"
stage, n*is the number of destinations.

b* is the column vector consisting of the availabilities
and requirements of the k™ sub-problem, bk is (m, + n,)
* 1 column vector. It follows that each set of
independent constraints can be written as:

D“x* = bX k = 1,2,...,N. x* represent the vector of the
corresponding variables, x* is (m, + n,) *1 column
vector.

Assuming that common constraints are:

A which represents the technogical matrix of k™ stage
activity, A, is my * (m, * ny) matrix, mg is the number of

2014 Global Journals Inc. (US)

common constraints. b° is the corresponding common
resources vector which canbe written as my*1.

This gives: A" x' + A% +
=p°
Assuming that the objective functions are:

ck which represent the vector of the first criterion
coefficients for the k™ stage activity, c* is 1*(m,*n,) row
vector.

d“ represent the vector of the second criterion
coefficients for the k™ stage activity, d* is 1*(m,*n,) row
vector.

Let: For the master program:

B be the basic matrix associated with the current basic
solution, B is (mo*N) * (m,+N) matrix.

Cg the row vector of the corresponding coefficients in
the objective function, Cgis 1*(m,+N) row vector.

R, the matrix of size (m, + N)*m, consisting of the first
mo columns of B, and

v;the (m, + j)th column of the same matrix B

The algorithm presented here is divided into two
phases.
Phase 1: To determine the non-dominated extreme
points in the objective space. This algorithm is validated
by the following theorem [1].

e Theorem
Point 2@ =(Zl(q), qu)) in a non-dominated extreme point is

the objective space if and only if z(q) is recorded by the
algorithm.

Phase Il: The decomposition algorithm can be found in
[7]. Since the special structure of the (BMTSP 3) model
may allow the determination of the optimal solution by
decomposing the problem into small sub-problems then
by solving those sub-problems almost independently,
and the decomposition algorithm for solving large scale
linear programming problems utilizing the special nature
of transshipment problem can be used to solve it.

Phase I:

Step 1: From phase I, we can find:
z® =Min. (z,/x&e M)
z{" = Min. (z2 /z, =2z" and X & M)

Zl(l) and ZS) are obtained and g is set to 1.
Similarly, we can find:

2 =Min. (z,/x& M)
z® = Min. (zl /z, =28 and x ¢ M)

(2", ") =(z", z,"), stop.



Otherwise record (Z,(Z) , Zéz)) and set q=q+1
Defines sets L = {(1,2)} and E = ¢, and go to step 2.
Step 2: Choose an element (r,s) €L and set

al™ =z — z{”| and
al™ = |z,‘s’ -zl and
Go to phase Il to obtain the optimal solution

(x"ykzl,sz)to the multistage transshipment problem.

N
Minimize )"

k=l i, g
Subject to
x*eM, x>0, k=12,..,N

(r.s) (r.s) k
e ck. +al dnka)

ik i Jk

If there are alternative optima, choose an
optimal solution x|

N
Z Z (Clka X';Tk

k=l iy, Ji

— N
an -3
=1

k=1,2,.N, forwhich

min .)

and

Z C'k Jk 'k Jk

i

N
Z d'k]k

k=l iy, i

=

'k]k

If (z,.z,) isequalto (z{",z5"”) or (2, z{>)
SetE = EWU {(r,s)} and go to step 3.

Otherwise record (z\", {%) such that

2V =7,,2 =Z2 andset q=q+1,

L=L v {(r,9} (g,8)} and go to step 3.

Step 3:SetL =L-{(r-s)}. If L = ¢, stop.

Otherwise go to step 2.

Phase II:

Step 1 : Reduce the original problem to the modified
form in terms of the new variables B*

Step 2 : Find an initial basic feasible solution to the
modified problem.

Step 3 : Solve the sub-problems
K=(*OR d* —¢c, R, A*) x*

Subject to:

Note: ckis used with the first criteria, and d is used with
the second criteria.

In order to obtain X and W™ by using the
transportation technique, go to step 4.
Step 4 : For the current iteration, find:
P k
L =W—Cy V', k=12,...,N,

Then determine o = Mkin (")

If © = O, the current solution is optimal and
the process can be terminated, the optimal solution to
multistage transportation problem is:

= K
= Z Ve
L=1
Otherwise, go to step 5.

Step 5 : Introduce the variable ﬂf corresponding to
p into the basic solution. Determine the leaving variable
using the feasibility condition and compute the next B
using the revised simplex method technique, go to
step 3.

o llustrative Example
The suggested algorithm for solving problem of
the type BMTSP 3 is illustrated in the following example:
Consider the following bi-criteria two-stage
transshipment problem. For each stage the availabilities,
requirements, costs and deteriorations for each stage
are given by:

AK
xl, k=1,2,...,N

a =6, aj=4, a,=2, bj=a’=9, b =al =3,
2 2 2
bi =6, by =2, by=4

Table 1-1 : Transportation cost at stages (1)

Dll D12 Sll S12 S13
shls514]0]2]1
sh,|10| 8 | 1|0 | 4
S5 91913210
DYl o1 [5]1]9]9
pL| 3]0 |4|6|7

Table 1-2 : Transportation cost at stages (2)

D21 D22 D23 321 822
S 1413131013
s 814171210
D | 0|2 | 4|87
D, | 4|03 |3]|5
D5 [ 3410|409
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Table 2-1 : Deterioration cost at stages (1)

Dll D12 Sll S12 S13
sh13]6[0|1]|4
S, 719113016
S5 1121141610
DYl 0| 3|7 |11]12
DL 5101|788

D21 I)Z2 D23 321 822
1655016
L 116191510
D | 0| 4|6 11|09
DL | 6 | 0| 5|47
D5 | 5] 710|611

One requirement is added to the above
problem:

It is required that the quantity shipped from the
first source to the first destination in the first stage is
equal to the quantity shipped from the first source to the
first destination in the second stage.

The mathematical model is given as follows:

Minimize 1 = sy 4 4x!, +0x' 3 + 2x" g + X'y

+10x1,; + 8%y + x5 + 0x'yy + 4x5s
+ 9x131 + 9x132 + 3X133 + 2X134 + 0X135
+0x'4; + x4+ 5x 43+ 9x 4y + 9x4s

+ 3x151 + 0x152 + 4X153 + 6X154 + 7X155
+4x%, +3x%, + 2x213 +0x%, + 3X215
+ 8x%1 +4x%, + Tx%s + 2x%, + 0xPas
+0x%5; + 2%, + 4355 + 8%y + Txss
+ax% + 0x2 4y + 3% + 3x% + 5%
+ 3x251 + 4x252 + 0x253 + 4x254 + 9x255

Zz = 3X111 + 6X112+0X113 + 1X114+4X1|5

Subiject to:

+7x' 5 +9x' 5 + 3x 55 + 0y + 6x'55

+ 12X131 + 11X132 + 4X133 + 6X134 + OX135
+0x'4y +3x 0+ 7x' 45 + 11x' 4y + 12x 45
+ 5X151 + 0X152 + 7X153 + 8X154 + 8X155

+ 6X211 + 5X212 + 5X213 + 0X214 + 6X215

+ 11x%; + 6xX% + 9x%9; + 5x%04 + 0x%as
+ 0X23] + 4X232 + 6X233 + 11X234 + 9X235
+6x g1+ 0x’gy + 5x gy + Axy + TXCys

+ 5X25] + 7X252 + 0X253 + 6X254 + 11X255

1 _2
X=X

1 1 1 1 1 _
X111+X112+X113+X 14+X115*18
Xt X+ X3+ X+t X05=16
1 1 1
X3t Xpt+tX33+tXytxss=14
1 1 1
X41‘*‘74142‘*'74143'*‘7444'*‘74145—12
X51+X152+X153+X 54‘*‘74155=12
1 1 1
1 1
1

atxs =21

1
1
1
1
1

X1t X X 31+X1

1

1

1

1

1

1
X:12+X122+X ntXptxs=15
X3 tXpat+X;tXgtxss=12
x:14 +x:24 +x:34 Xy Xy = 12
x215 + x225 + x235 + x245 + x255 =12
X HX X3ty x5 =21
XjZl +X§22+X223+X224+X225= 15
X1 + X3 +X233 +X234 +X235 =12
x241+x242+x $3TX 44‘*‘74245= 12
X251 +X252+X253+X254+X255= 12
X211 +x221 +x231 +x241 +x251 =18
lez+x222+x232+x242+X252: 14
X3t X 3+t Xp3 X3+ X753 =16
X214+X224+X234+X244+X254: 12

2 2 2 2
X5+ X5 + X35+ Xys + X55 = 12

Table 3 : Set of non dominated extreme points

lteration L

{12y
{(1.2)}
{(1.3),3.2)}
{32),(14), 43)}
{(14),33).35),(5.2)}
{(14),43).65);
{14, @3);
{4}
¢

O 002 Wb W —

© 2014 Global Journals Inc. (US)

E

o o oo o

{52}
{52).3.5}
{(5.2),3.5), 4.3)}
{(5.2), 3,5, 4.3), (1.4}

Recorded Point

7'=(113,156)
7°<(127,140)
7°=(121,141)
Z'=(115,149)
7°=(124,140)
7°=(124,140)
7'=(124,140)
7%= (115,149)
7°=(113,156)



Table 4 : Non zero value of X; for each non dominated point

Non zero value of Xj;

X' 1=0, X' 174, X' 1378, XIB:4, X]24:12, X]31:2, X'3§:12,

X'y=12, X's=1, X =11, Xo=6, X4, X1,
X2, Xae1, Xo=12, X5 =12, Xom12, Xo=12.

X' 1=0, X' 172, X' 15710, X]21:3, X]ZZ:1 5 X]24:12, X]33:2,

Xlzflz, Xl4|:12, Xlszzlz, X211:6, X213:3, X214:12»
X502, X1, Xo=12, X5 =12, Xom12, Xo=12.

X' 1=0, X' 12773, X' 1579, X]21:3, XIB:L X]24:12, X]3F2,

Xlzflz, Xl4|:12, Xlszzlz, X211:6, X213:4, X214:1 1,
X2, Xae1, Xo=12, X5 =12, Xom12, Xos=12.

X' 10, X' 12773, X' 1379, X]21:1, XIB:3, X]24:12, X]31:2,

Xlzflz, Xl4|:12, Xlszzlz, X211:6, X213:4, X214:1 1,
X2, Xoe1, Xo=12, Xa=12, Xom=12, Xos=12.

X' 1=6, X' 12773, X]13:9, X121:3, Xlﬂzl, X]24:12, XI3F2,

X'=12, X=12, X'5=12, X326, X3, Xie12,
X2, X1, Xo=12, Xa=12, Xo=12, Xos=12.

X' 1=6, X' 12773, X]13:9, X121:3, Xlﬂzl, X]24:12, XI3F2,

X'=12, X=12, X'5=12, X326, X3, X 12,
X2, X1, Xo=12, Xa=12, Xom=12, Xos=12.

X' 1=6, X' 12773, X]13:9, X121:3, Xlﬂzl, X]24:12, XI3F2,

X'=12, X=12, X'5=12, X326, X3, X 12,
X2, X1, Xo=12, Xa=12, Xom=12, Xos=12.

X' 1=6, X' 12773, X]13:9, Xlel, XIB:3, X]24:12, XI31:2,

X'=12, X4=12, X'5=12, X326, X4, X1,
X2, Xae1, Xo=12, Xa=12, Xom=12, Xos=12.

Tteration Non dominated
(2,2
1 Z'=(113,156)
2 7°=(127,140)
3 Z7°=(121,141)
4 Z'=(115,149)
5 7°=(124,140)
6 7= (124,140)
7 Z'=(124,140)
8 78=(115,149)
9 Z’=(113,156)

X' 1=6, X' 174, X]B;g’ XIB:4, X]24:12, X]31:2, X'35:12,

X'a=12,X's=1, X =11, Xo=6, X4, Xa= 11,
X2, Xae1, Xo=12, Xa=12, Xom=12, Xos=12.

[1I.  CONCLUSION

An algorithm for solving a certain class of bi-
criteria  multistage transportation  problems  with
transshipment (BMTSP) is presented. The presented
algorithm enables solving such problems more
realistically. It can be used for determining all efficient
extreme points. The main advantage of this approach is
that the bi-criteria two stage transshipment problem can
be solved using the standard form of a transshipment
problem at each iteration. Goods transportation may not
operate always directly among suppliers and customers.
In such problems, it is possible to optimize the
transshipment problem into two stages. From the
application, decision maker will have all efficient extreme
points and their related distributions. Therefore, any
point can be chosen, which will provide their policy.
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