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Concept of the Dispersion of Electric and Magnetic 
Inductivities and its Physical Interpretation 

F.F. Mende

Abstract- In a number of scientific publications is asserted that 
the permittivity and permeability of material media depends on 
frequency. But even Maxwell himself, who was the author of 
the basic equations of electrodynamics, believed that ε and µ 
were frequency-independent fundamental constants. The 
article shows that Max well was right, and the recognition of 
the presence of dispersion in the dielectric constant and 
magnetic permeability is a physical and methodological error. 
In it is shown that the kinetic inductance of charge has the 
same fundamental value as the dielectric and magnetic 
constant of material media. Are introduced the new concepts 
of the magneto electro kinetic wave and electro magneto 
potential waves, and also the kinetic capacitance. 
Keywords: max well questions; plasma media; dielectric 
media; magnetic media; permittivity; permeability; 
kinetic inductivity; polarization vector; london equation; 
magnetic resonance; magneto electro kinetic wave; 
electro magneto potential waves; kinetic capacitanc. 

I. Introduction 

ow the idea of ε and µ-dispersion appeared and 
evolved is illustrated vividly in the monograph of 
well-known specialists in physics of plasma                   
[1]: while working at the equations of 

electrodynamics of material, media, G. Maxwell looked 
upon electric and magnetic inductivities as constants 
(that is why this approach was so lasting). Much later, at 
the beginning of the XX century, G. Heavisidr and R.Wull 
put forward their explanation for phenomena of optical 
dispersion (in particular rainbow) in which electric and 
magnetic inductivities came as functions of frequency. 
Quite recently, in the mid-50ies of the last century, 
physicists arrived at the conclusion that these 
parameters were dependent not only on the frequency 
but on the wave vector as well. That was a revolutionary 
breakaway from the current concepts. The importance 
of the problem is clearly illustrated by what happened at 
a seminar held by L. D. Landau in 1954, where he 
interrupted A. L. Akhiezer reporting on the subject: 
“Nonsense, the refractive index cannot be a function of 
the refractive index”. Note, this was said by L. D. 
Landau, an outstanding physicist of our time.  

What is the actual situation? Running ahead, I 
can admit that Maxwell was right: both ε and µ are 
frequency – independent  constants  characterizing  one  
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or

 

another material medium. Since dispersion of electric 
and magnetic inductivities of material media is one of 

the basic problems of the present – day physics and 
electrodynamics, the system of views on these 
questions has to be radically altered again.

 II.

 

Plasma

 

Media

 
It is noted in the introduction that dispersion of 

electric and magnetic inductivities of material media is a 
commonly accepted idea [1-5]. The idea is however not 
correct.

 
To explain this statement and to gain a better 

understanding of the physical essence of the problem, 
we start with a simple example showing how electric 
lumped-parameter circuits can be described [6]. As we 
can see below, this example is directly concerned with 
the problem of our interest and will give us a better 
insight into the physical picture of the

 

electro

 

dynamic 
processes in material media.

 
In a parallel resonance circuit including a 

capacitor С

 

and an inductance coil L, the applied 
voltage U and the total current

 

IΣ

 

through the circuit are 
related as

 

∫+=+=Σ tdU
Ltd

Ud
CIII LC

1
  ,

 
where

td
Ud

CIC =

 

is the current through the 

capacitor, ∫= tdU
L

IL
1

 

is the current through the 

inductance coil. For the harmonic voltage U = U0

 

sin ωt

 

 

            

tU
L

CI ω
ω

ω cos1
0










−=Σ

 

.      (2.1)

 The term in brackets is the total susceptance

 

σх

 

of the circuit, which consists of the capacitive

 

σс

 

and 
inductive σL

 

components

 L
CLcx ω

ωσσσ 1
−=+=    .

 

H 
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Eq. (2.1) can be re-written as

tUCI ω
ω
ω

ω cos1 02

2
0








−=Σ ,



 
 

 

 

Where

 

LC
12

0 =ω

 

is the resonance frequency 

of a parallel circuit.

 

From the mathematical (i.e. other than physical) 
standpoint, we may assume a circuit that has only a 
capacitor and no inductance coil. Its frequency – 
dependent capacitance is

                     








−=
ω
ω

ω
2
01)(* CC   .                 (2.2)

 

Another approach is possible, which is correct too. 

 

Eq. (2.1) can be re-written as

 
tU

L
I ω

ω
ω
ω

cos
1

0

2
0

2









−

−=Σ

 

. 

In this case the

 

circuit is assumed to include 
only an inductance coil and no capacitor. Its frequency – 
dependent inductance is

 

                     








−

=

1
)(*

2
0

2

ω
ω

ω LL
      .             (2.3)

 
Using the notion Eqs. (2.2) and (2.3), we can write

              
tUCI ωωω cos)(* 0=Σ ,         

  

(2.4)

 
or

 

         

tU
L

I ω
ωω

cos
)(*

1
0−=Σ

 

.         

 

(2.5)

 
Eqs (2.4) and (2.5) are equivalent and each of 

them provides a complete mathematical description of 

the circuit. From the physical point of view, )(* ωC

 

and 

)(* ωL

 

do not represent capacitance and inductance 
though they have the corresponding dimensions. Their 
physical sense is as follows:

 ω
σ

ω XC =)(*

 

, 

i.e. )(* ωC

 

is the total susceptance of this circuit 
divided by frequency:

 

X

L
σω

ω 1)(* =

 

, 

and )(* ωL

 

is the inverse value of the product of the 
total susceptance and the frequency.

 

Amount )(* ωC

 

is constricted mathematically 
so that it includes C

 

and

 

L

 

simultaneously. The same is 

true for )(* ωL .

 

We shall not consider here any other cases, 
e.g., series or more complex circuits. It is however 
important to note that applying the above method, any 
circuit consisting of the reactive components C

 

and L

 

can be described either through frequency – dependent 
inductance or frequency – dependent capacitance.

 

But this is only a mathematical description of 
real circuits with constant – value reactive elements. 

 

It is well known that the energy stored in the 
capacitor and inductance coil can be found as

 

                           

2

2
1 UCWC =   ,                       (2.6)

 

                   

 

        

2

2
1 ILWL =

  
  .   

 

                     (2.7)

 

But what can be done if we have )(* ωC and 

)(* ωL ? There is no way of substituting them into Eqs. 
(2.6) and (2.7) because they can be both positive and 
negative. It can be shown readily that the energy stored 
in the circuit analyzed is 

 

                      

2

2
1 U

d
d

W X

ω
σ

⋅=Σ   ,               

 

(2.8)

 

or

 

        

 

      

 

[ ] 2)(*
2
1 U

d
Cd

W
ω
ωω

⋅=Σ   ,            (2.9)

 

or
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2
)(*

1

2
1 U

d
L

d
W

ω

ωω 










⋅=Σ   .       (3.10)

Having written Eqs. (2.8), (2.9) or (2.10) in 
greater detail, we arrive at the same result:

,
2
1

2
1 22 ILUCW +=Σ



 
 

 

 

 

Where

 

U

 

is the voltage at the capacitor and I

 

is 
the current through the inductance coil. Below we 
consider the physical meaning jog the magnitudes ε(ω) 
and µ(ω) for material media.

 

A superconductor is a perfect plasma medium 
in which charge carriers (electrons) can move without 
friction. In this case the equation of motion is

 

                            

Ee
td
Vd

m




=  ,                  (2.11)

 

Where

 

m

 

and e

 

are the electron mass and 

charge, respectively; E


 

is the electric field strength, V


 

is the velocity. Taking into account the current density

 

                                   
,Venj


=
                    

(2.12)

 

we can obtain from Eq. (2.11) 

 

                      

∫= tdE
m
en

jL

 2

        

 

.         (2.13)

 

In Eqs. (2.12) and (2.13) n

 

is the specific charge 
density. Introducing the notion

 

2en
mLk =   , 

we can write

 

                           

∫= tdE
L

j
k

L

 1

      

 

.          (2.14)

 

Here Lk

 

is the kinetic inductivity of the medium 
[7-11]. Its existence is based on the fact that a charge 
carrier has a mass and hence it possesses inertia 
properties.

 

For harmonic fields we have tEE ωsin0


=

 

and Eq. (2.14) becomes

 

           

tE
L

j
k

L ω
ω

cos1
0−=


  .               (2.15)

 

Eqs. (2.14) and (2.15) show that Lj


 

is the 
current through the inductance coil.

 

In this case the Maxwell equations take the 
following form

 
,1

,

0

0

∫+=+=

−=

tdE
Lt

E
jjHrot

t
H

Erot

k
LC









∂
∂

ε

∂
∂

µ

(2.16)

 

Where

 

ε0 and µ0

 

are the electric and magnetic 

inductivities in vacuum, Cj


 

and Lj


 

are the 

displacement and conduction currents, respectively. As 

was shown above, Lj


 

is the inductive current.

 

Eq. (2.16) gives

 

        

00
2

2

00 =++ H
Lt

HHrotrot
k




 µ
∂
∂εµ .       (2.17)

 

For time-independent fields, Eq. (2.17) 
transforms into the London equation [12]

 

00 =+ H
L

Hrotrot
k

 µ
 , 

where
0

2

µ
λ k

L
L

=

 

is the London depth of penetration.

 

As Eq. (2.16) shows, the inductivities of plasma 
(both electric and magnetic) are frequency – 
independent and equal to the corresponding 
parameters for vacuum. Besides, such plasma has 
another fundamental material characteristic – kinetic 
inductivity.

 

Eqs. (2.16) hold for both constant and variable 

fields. For harmonic fields tEE ωsin0


= , Eq.(2.16) 

gives

 
          

tE
L

Hrot
k

ω
ω

ωε cos1
00










−= .       (2.18)

 

Taking the bracketed value as the specific 
susceptance

 

σx  of plasma, we can write

 

                             
tEHrot X ωσ cos0


=

 

,                         (2.19)
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where

    
)(*11

2

2

00 ωεω
ω
ω

ωε
ω

ωεσ ρ =









−=−=

k
X L

, (2.20)



 
 

 

 and 









−=
ω
ϖ

εωε ρ
2

0 1)(* , where 
kL0

2 1
ε

ωρ =

 

is the plasma frequency.

 

Now Eq. (2.19) can be re-written as

 
tEHrot ω

ω
ω

εω ρ cos1 02

2

0













−=   , 

or

 

tEHrot ωωεω cos)(* 0


= . 

The ε*(ω) –parameter is conventionally called 
the frequency-dependent electric inductivity of plasma. 
In reality however this magnitude includes 
simultaneously the electric inductivity of vacuum aid the 
kinetic inductivity of plasma. It can be found as

 
ω
σωε X=)(*   . 

It is evident that there is another way of writing σХ

 

    

,
*

1111
2

2

0
kkk

X LLL ωω
ω

ωω
ωεσ

ρ

=









−=−=    (2.21)

 
where

 
ωσ

ω
ω

ω

ρ

X

k
k

LL 1

1
)(*

2

2
=











−

=
   . 

Lk*(ω)

 

written this way includes both ε0

 

and Lk. 

Eqs. (2.20) and (2.21) are equivalent, and it is 
safe to say that plasma is characterized by the 
frequency-dependent kinetic inductance Lk*(ω) rather 
than by the frequency-dependent electric inductivity 
ε*(ω). 

Eq. (2.18) can be re-written using the 
parameters ε*(ω)

 

and Lk*(ω)

 
            

tEHrot ωωεω cos)(* 0


= ,      (2.22)

 
or

 

         

tE
L

Hrot
k

ω
ωω

cos
)(*

1
0


=   .      (2.23)

 

Eqs. (2.22) and (2.23) are equivalent.

 

Thus, the parameter ε*(ω)

 

is not an electric 
inductivity though it has its dimensions. The same can 
be said about Lk*(ω).

 

We can see readily that

 

ω
σωε X=)(*     , 

ωσ
ω

X
kL 1)(* =    . 

These relations describe the physical meaning 
of ε*(ω)

 

and Lk*(ω).

 

Of course, the parameters ε*(ω)

 

and Lk*(ω)

 

are 
hardly usable for calculating energy by the following 
equations

 

2
02

1 EWE ε=

 

and

 

2
02

1 jLW kj = . 

For this purpose the Eq. (2.9)-type fotmula was 
devised in [2]:

               

[ ] 2
0

)(*
2
1 E

d
d

W
ω
ωεω

⋅=   .          (2.24)

 

Using Eq. (2.24), we can obtain

 

2
0

2
00

2
02

2
00 2

1
2
11

2
1

2
1 jLEE

L
EW k

k

+=⋅+=Σ ε
ω

ε   

The same result is obtainable from

 
2
0

)(*
1

2
1 E

d
L

d
W k

ω

ωω 











⋅= . 

As in the case of a parallel circuit, either of  the 
parameters ε*(ω)

 

and Lk*(ω), similarly to  C*(ω)

 

and 
L*(ω), characterize completely the electro

 

dynamic 
properties of plasma. The case
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ε*(ω) = 0

Lk*(ω) = ∞

corresponds to the resonance of current.



 
 

 

 

 

 

We have found that ε(ω)

 

is not dielectric 
inductivity permittivity. Instead, it includes two 
frequency-independent parameters ε0

 

and Lk. What is 
the reason for the physical misunderstanding of the 
parameter ε(ω)? This occurs first of all because for the 

case of plasma the ∫ tdE
Lk

1 - type term is not 

explicitly present in the second Maxwell equation.

 

There is however another reason for this serious 
mistake

 

in the present-day physics [2] as an example. 
This study states that there is no difference between 
dielectrics and conductors at very high frequencies. On 
this basis the authors suggest the existence of a 
polarization vector in conducting media and this vector 
is introduced from the relation

 

                       mm renreP 
=Σ=

 

,            (2.25)

 

Where

 

n

 

is the charge carrier density, mr

 

is the 

current charge displacement. This approach is 
physically erroneous because only bound charges can 
polarize and form electric dipoles when the external field 
overcoming the attraction force of the bound charges 
accumulates extra electrostatic energy in the dipoles. In 
conductors the charges are not bound and their 
displacement would

 

not produce any extra electrostatic 
energy. This is especially obvious if we employ the 
induction technique to induce current (i.e. to displace 
charges) in a ring conductor. In this case there is no 
restoring force to act upon the charges, hence, no 
electric polarization is possible. In [2] the polarization 
vector found from Eq. (2.25) is introduced into the 
electric induction of conducting media

 

,0 PED


+= ε

 

Where the vector P


of a metal is obtained from 
Eq. (2.25), which is wrong.

 

Since 

 

E
m

erm


2

2

ω
−=    , 

for free carriers, then

 

E
m

en
P


2

2

)(*
ω

ω −=      , 

for plasma, and

 

EPED p 











−=+= 2

2

00 1)(*)(*
ω
ω

εωεω   . 

Thus, the total accumulated energy is

 

           

2
2

2
0

1
2
1

2
1 E

L
EW

k ω
ε ⋅+=Σ

 

.       (2.26)

 

However, the second term in the right-hand side 
of Eq. (2.26) is the kinetic energy (in contrast to 
dielectrics for which this term is the potential energy). 
Hence, the electric induction vector D*(ω)

 

does not 
correspond to the physical definition of the electric 
induction vector.

 

The physical meaning of the introduced vector

)(* ωP


 

is clear from

 

E
L

EP
k

L


2

1)(*
ωω

σω ==    . 

The interpretation of ε(ω)

 

as frequency-
dependent inductivity has been harmful for correct 
understanding of the real physical picture (especially in 
the educational processes). Besides, it has drawn away 
the researchers attention from some physical 
phenomena in plasma, which first of all include the 
transverse plasma resonance and three energy 
components of the magneto

 

electro

 

kinetic wave 
propagating in plasma [13-14].

 

III.

 

Dielectric

 

Media

 

Applied fields cause polarization of bound 
charges in dielectrics. The polarization takes some 
energy from the field source, and the dielectric 
accumulates extra electrostatic energy. The extent of 
displacement of the polarized charges from the 
equilibrium is dependent on the electric field and the 
coefficient of elasticity β, characterizing the elasticity of 
the charge bonds. These parameters are related as

 

                

 

  
,2 E

m
er

m
r mm


=+−

βω                   (3.1)

 

Where mr


is the charge displacement from the 

equilibrium.
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Putting ω0 for the resonance frequency of the 
bound charges and taking into account that ω0= β⁄m  
we obtain from Eq. (3.1)

)( 22
o

m m
Eer

ωω −
−=




The polarization vector becomes

.
)(

1* 2
0

2

2

E
m
en

Pm



ωω −
⋅−=



 
 

 

 

 

 

 

Since

 

,)1(0 EP


−= εε

 

we obtain

 

.11)(* 2
0

2
0

2

ωωε
ωε∂ −

⋅−=′
m

en

 

The quantity )(*' ωε∂ is commonly called the 

relative frequency dependably electric inductivity. Its 
absolute value can be found as

 

        

).11()(* 2
0

2
0

2

0 ωωε
εωε∂ −

⋅−=
m
en

     

(3.2)

 

Once again, we arrive at the frequency-
dependent dielectric permitlivity. Let us take a closer 

look at the quantity )(* ωε∂ . As before, we 

introduce 
2en

mLk =∂

 

and 

0
.

1
ε

ω
∂

∂
k

p L
= and 

see immediately that the vibrating charges of the 
dielectric have masses and thus possess inertia 
properties. As a result, their kinetic inductivity would 
make itself evident too. Eq. (3.2) can be re-written as

 

).1()(* 2
0

2

2

0 ωω

ω
εωε ∂

∂ −
−=

p

 

It is appropriate to examine two limiting cases: 
ω>>ω0

 

andω<<ω0.

 

If ω>>ω0 , 

)1()(* 2

2

0 ω

ω
εωε ∂

∂
p

−=   , 

and the dielectric behaves just like plasma. This case 
has prompted the idea that at high frequencies there is 
no difference between dielectrics and plasma. The idea 
served as a basis for introducing the polarization vector 
in conductors [2]. The difference however exists and it is 
of fundamental importance. In dielectrics, because of 
inertia, the amplitude of charge vibrations is very small 
at high frequencies and so is the polarization vector. The 
polarization vector is always zero in conductors.

 

For ω<<ω0  , 

)1()(* 2
0

2

0 ω

ω
εωε ∂

∂
p

+=   , 

and the permittivity of the dielectric is independent of 

frequency. It is )1( 2
0

2

ω

ω ∂p
+

 

times higher than in 

vacuum. This result is quite clear. At ω>>ω0

 

the inertia 
properties areinactive and permittivity approaches its 
value in the static field.

 

IV.

 

Magnetic Media

 

The resonance phenomena in plasma and 
dielectrics are characterized by repeated electrostatic-
kinetic and kinetic-electrostatic transformations of the 
charge motion energy during oscillations. This can be 
described as an electrokinetic process, and devices 
based on it (lasers, masers, filters, etc.) can be 
classified as electrokinetic units.

 

However, another type of resonance is also 
possible, namely, magnetic resonance. Within the 
current concepts of frequency-dependent permeability, 
it is easy to show that such dependence is related to 
magnetic resonance. For example, let us consider 
ferromagnetic resonance. A ferrite magnetized by 
applying a stationary field Н0

 

parallel to the z-axis will act 
as an anisotropic magnet in relation to the variable 
external field. The complex permeability of this medium 
has the form of a tensor

 

[15]:
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Being the natural professional frequency, and 

                                        М0 = µ0(µ−1)Н0                      (4.2)

is the medium magnetization.
Taking into account Eqs. (4.1) and (4.2) for 

)(* ωµT , we can write

                      
22

2 )1(1)(*
Ω−
−Ω

−=
ω

µωµT   .        (4.3)

Assuming that the electromagnetic wave 
propagates along the x-axis and there are Нy and Нz

components, the first Max well equation becomes 
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Taking into account Eq. (4.3), we obtain
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For ω>>Ω
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Assumeng 0yy HH


= sinωt

 

and taking into 

account that 
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Eq. (4.4) gives
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For ω<<Ω
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The quantity

 

)1(

1

2
0 −Ω

=

µµ
kC

 

can be described as kinetic capacitance[16-17]. What is 
its physical meaning? If the direction of the magnetic 
moment does not coincide with that of the external 
magnetic field, the vector of the moment starts 
precessional motion at the frequency Ω

 

about the 
magnetic field vector. The magnetic moment m

 

has 

the potential energy BmU m


⋅−= . Like in a charged 

condenser, Um

 

is the potential energy because the 
precessional motion is inertia

 

less (even though it is 
mechanical) and it stops immediately when the 
magnetic field is lifted. In the magnetic field the 
processional motion lasts until the accumulated 
potential energy is exhausted and the vector of the 

magnetic moment becomes parallel to the vector 0H


. 
Magnetic resonance occurs at the point ω=Ω

 

and µт*(ω)→−∞. It is seen that the resonance frequency 
of the macroscopic magnetic resonator is independent 
of the line size and equals Ω. 

Thus, the parameter

 






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
Ω−
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−= 22

2

0
)1(1)(*

ω
µµωµH

 

is not a frequency-dependent permeability. 

 

V.

 

Conclusion 

Thus, it has been found that along with the 
fundamental parameters εε0

 

and µµ0

 

characterizing the 
electric and magnetic energy accumulated and 
transferred in the medium, there are two more basic 
material parameters Lk

 

and Ck. They characterize kinetic 
and potential energy that can be accumulated and 
transferred in material media. Lk

 

was sometimes used to 
describe certain physical phenomena, for example, in 
super

 

conductors,

 

Ck

 

has never been known to exist. 
These four fundamental parameters εε0, µµ0, Lk

 

and Ck

 

clarify the physical picture of the wave and resonance 
processes in material media in applied electromagnetic 
fields. Previously, only electromagnetic waves were 
thought to propagate and transfer energy in material 
media. It is clear now that the concept was not 
complete. In fact, magneto

 

electro

 

kinetic, or electro

 

magneto

 

potential waves travel in material media. The 
resonances in these media

 

also have specific features. 
Unlike closed planes with electromagnetic resonance 
and energy exchange between electric and magnetic 
fields, material media have two types of resonance – 
electro

 

kinetic and magneto

 

potential. Under the electro

 

kinetic

 

resonsnce the energy of the electric field 
changes to kinetic energy. In the case of magneto

 

potential resonance the potential energy accumulated 
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during the precessional motion can escape outside at 
the precession frequency.

The notions of permittivity and permeability 
dispersion thus become physically groundless though 
ε∗(ω) and µ∗(ω) are handy for a mathematical 
description of the processes in material media. We 
should however remember their true meaning especially 
where educational processes are involved.

It is surprising that Eq. (3.29) actually accounts 
for the whole of electrodynamics beause all current 
electrodynamics problems can be solved using this 
equation. What is then a magnetic field? This is merely a 
convenient mathematical procedure which is not 
necessarily gives a correct result (e.g., in the case of 
parallel-moving charges). Now we can state that 
electrocurrent, rather than electromagnetic, waves travel 
in space. Their electric field and displacement current 
vectors are in the same plane and displaced by π/2.

Any theory is dead unless important practical 
results are obtained of its basis. The use of the 
previously unknown transverse plasma resonance [14]  
is one of the most important practical results following 
from this study.
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