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I.

 

Introduction

 

he spectral methods have been shown to be 
remarkably successful when solving time-
dependent partial differential equations (PDEs).The 

idea is to approximate a solution ( , )u x t

 

by a finite sum

 

0
( , ) ( ) ( )

N

k k
k

x t t xψ κ ϕ
=

=∑

 

Where  the function class ( )k xϕ

 

, 
0,1, 2,...k N=

 

will be trigonometric for x -periodic 
problems and, otherwise, an orthogonal polynomial of 
Jacobi type, with Chebyshev

 

polynomial being the most 
important special case.To determine the expansion 
coefficients ( )k tκ

 

, we will focus on the pseudospectral 
methods, where it is required that the coefficients make 
the residual equal zero at as many (suitably

 

chosen) 
spatial points as possible.Three books [15,17] and [19] 
have been contributed to supplement the classic 
references [18] and [16]

 

When a time-dependent PDE is discretized in 
space with a spectral simulation, the result is a coupled 
system of ordinary differential equations (ODEs) in time: 
it is the notion of the method of lines  and the resulting 
set of ODEs is stiff; the stiffness problem may be even 

exacerbated sometimes, for example, using Chebyshev 
polynomials.The linear terms are primarily responsible 
for the stiffness with rapid exponential decay of some 
modes (as with a dissipative PDE) or a rapid oscillation 
of some modes (as with a dispersive PDE).Therefore, for 
a time-dependent PDE which combines low-order 
nonlinear terms with higher-order linear terms it is 
desirable to use higher-order approximation in space 
and time.The outline of this paper is as follows. In 
Section2 we describe the ETDRK4 (Exponential Time 
Differencing fourth-order Runge–Kutta) method by Cox 
and Matthews in [12] and the

 

modification proposed by 
Kassam and Trefethen in [6].We discuss the stability of 
the ETDRK4 method in Section 3. In Sections 4 and 5 
we test the method for the Kuramoto- Sivashinsky  
equation in one  space dimensions and, finally,  In 
Sections 6 we summarize our conclusions.

 II.

 

Exponential Time

 

Differencing 
Fourth-Order Runge–Kutta

 

Method

 The numerical method considered in this paper 
is an exponential time differencing (ETD) scheme. These 
methods arose originally in the field of computational 
electrodynamics [20]. Since then, they have recently 
received attention in [21] and [22], but the most 
comprehensive treatment, and in particular the ETD with 
Runge–Kutta time stepping, is in the paper by Cox and 
Matthews [12]. The idea of the ETD methods is similar 
to the method of the integrating factor (see, for example, 
[15] or [19]) we multiply both sides of a differential 
equation by some integrating factor, then we make a 
change of variable that allows us to solve the linear part 
exactly and, finally, we use a numerical method of our 
choice to solve the transformed nonlinear part.

 
When a time-dependent PDE in the form

                               ( , )tu u u t= + L                  (2.1)

 where ℒ

 

and ℕ

 

are the linear and nonlinear 
operators respectively, is discretized

 

in space with a 
spectral method, the result is a coupled system of 
ordinary differential equations (ODEs),

                                  ( , )tu Lu N u t= +                    

 

(2.2)

 Multiplying (2.2) by the terme Lte− ,

 

known as 
the integrating factor,  gives

 

T
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Abstract- The spectral methods offer very high spatial 
resolution for a wide range of nonlinear wave equations, so, for 
the best computational efficiency, it should be desirable to use 
also high order methods in time but without very strict 
restrictions on the step size by reason of numerical stability. In 
this paper we study the exponential time differencing fourth-
order Runge–Kutta (ETDRK4) method; this scheme was 
derived by Cox and Matthews in [S.M. Cox, P.C. Matthews, 
Exponential time differencing for stiff systems, J. Comp. Phys. 
176 (2002) 430–455] and was modified by Kassam and 
Trefethen in [A. Kassam, L.N. Trefethen, Fourth-order time 
stepping for stiff PDEs, SIAM J. Sci. Comp. 26 (2005) 
1214–1233].   We compute its amplification factor and plot its 
stability region, which gives us an explanation of its good 
behavior for dissipative and dispersive problems. We apply 
this method to the Kuramoto-Sivashinsky Equation  obtaining 
excellent results.

   ( , )Lt Lt Lt
te u e Lu e N u t− − −− =               (2.3)



                 

 and with the new variable

 

Ltv e u−= , we find the 
transformed equation

                          ( , )Lt Lt
tv e N e v t−=                        (2.4)

 Where the linear term is gone; now we can use 
a time stepping method of our choice to advance in 
time. However, the integrating factor methods can also 
be a trap, for example, to model the formation and 
dynamics of solitary waves of the KdV equation (see 
Chapter 14 of[15]). A second drawback is the large error 
constant. In the derivation of the ETD methods, following 

[21], instead of changing the variable, we integrate (2.3) 
over a single time step of length, getting 

1
0

( ( ), )
h

Lh Lh Lh
n n n nu e u e e N u t t dτ τ τ−
+ = + + +∫  (2.5) 

The various ETD methods come from how one 
approximates the integral in this expression. Cox and 
Matthews derived in [12] a set of ETD methods based 
on the Runge–Kutta time stepping, which they called 
ETDRK methods. In this paper we consider the ETDRK4 
fourth-order scheme with the formulae 
  
 /2 1 /2( ) ( , )Lh Lh

n n n na e u L e I N u t−= + −
 

/2 1 /2( ) ( , , )
2

Lh Lh
n n n n n

hb e u L e I N a u t−= + − +
 

/2 1 /2( ) 2 ( , ) ( , )
2

Lh Lh
n n n n n n

hb e a L e I N b t N u t−  = + − + −    

{2 3 2
1

2

4 (4 3 ( ) ) ( , )

2[2 ( 2 )] ( , ) ( , )
2 2

4 3 ( ) ) (4 ) ( , )
2

Lh Lh
n n n n

Lh
n n n n

Lh
n n

u e u h L I hL e I hL hL N u t

h hI hL e I hL N a t N b t

hI hL hL e I hL N c t

− −
+  = + − − + − + 

 + + + − + + + + 
 

 + − − − + − +   

More detailed derivations of the ETD schemes 
can be found in [12].

 

Unfortunately, in this form ETDRK4 suffers from 
numerical instability when L

 

has eigenvalues close to 
zero, because disastrous cancellation errors arise. 
Kassam and

 

Trefethen have studied in [6] these 
instabilities and have found that they can be removed by 
evaluating a certain integral on a contour that is 
separated from zero. The procedure is basically to 
change the evaluation of the coefficients, which is 
mathematically equivalent to the original ETDRK4 
scheme of [12], but in [23] it has been shown to have 
the effect of improving the stability of integration in time. 
Also, it can be easily implemented and the impact on 
the total computing time is small. In fact, we have 
always used this idea in our MATLAB©

 

codes.

 

III.

 

On
 
the Stability of Etdrk4  

Method

 

The stability analysis of the ETDRK4 method is 
as follows (see [21,24] or[12]). For the nonlinear ODE                                                                         

)),(()()( ttuFtcu
dt

tdu
+=                 (3.1)

 

With ( ( ), )F u t t

 

the nonlinear part, we suppose 

that there exists a fixed point 0u this means that 

0 0( , ) 0cu F u t+ =

 

. Linearizing about this fixed point, if   

( )u t is the perturbation of 0u   and  0'( , )F u tδ =   then

 

                    

( ) ( ) ( )du t cu t u t
dt

δ= +                     (3.2)

 

and the fixed point 

 

0 ( )u t is stable if  Re( ) 0c δ+ <  .

 

The application of the ETDRK4  method to (3.2)  leads to 
a recurrence relation involving  nu

 

and 1nu + . Introducing 

the previous notation x hδ=   and y ch= , and using 
the Mathematica©

 

algebra package, we obtain the 
following amplification factor

 

         

2 3 41
0 1 2 3 4( , )n

n

u r x y x x x x
u
+ = = + + + +                (3.3)   

 

                 

 
 
 
 
 
 

An Exponential Time Differencing Method for the Kuramoto-Sivashinsky Equation

© 2014  Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)
V
ol
um

e 
 X

IV
  

Is
su

e 
 I
  

V
er
si
on

 I
  

  
  
 

  
Y
e
a
r

20
14

56

I



where    

0
ye=  

3 3
2 22 2 2 2

1 3 3 3 3 2 2 2 2 2
4 8 8 4 1 4 6 4

y y y y
y y ye e e e e e e

y y y y y y y y y
−

= + − + − + − + −  

3 3
2 22 2 2 2 2

2 4 4 4 4 3 3 3 3 3 2 2 3
8 16 16 8 5 12 10 4 1 4 3 ,

y y y y y
y y y ye e e e e e e e e

y y y y y y y y y y y y
−

= + − + − + − + − − + −  

3 35 52 22 2 2 2 2 2

3 5 5 5 5 5 5 4 4 4 4 4 4

3
2 2

3 3 3

4 16 16 8 20 8 2 10 16 12 6 2

2 4 2

y y y y y y
y y y y

y y
y

e e e e e e e e e e
y y y y y y y y y y y y

e e e
y y y

−
= − + + − + − + + − + −

− + −



 

3 35 52 22 2 2 2 2 2

4 6 6 6 5 6 6 5 5 5 5 5 5

3
2 2

4 4 4 4

8 24 16 16 24 8 6 18 20 12 6 2

2 6 6 2

y y y y y y
y y y y

y y
y

e e e e e e e e e e
y y y y y y y y y y y y

e e e
y y y y

−
= − + + − + + + + − + +

+ − + −



An important remark: computing

0 1 2 3 4, , , ,       by the above expressions suffers from 

numerical instability for y
 
close to zero. Because of that, 

for small y , instead of them, we will use their 
asymptotic expansions.

 

   

2 3 4 5 6
1

1 1 13 71 ( )
2 6 320 960

y y y y y O y= + + + + + +
 

2 3 4 5 6
2

1 1 1 247 131 479 ( )
2 2 4 2880 5760 96768

y y y y y O y= + + + + + +
 

2 3 4 5 6
3

1 1 61 1 1441 67 ( )
6 6 720 36 241920 120960

y y y y y O y= + + + + + +

 

2 3 4 5 6
4

1 1 7 19 311 479 ( )
24 32 640 11520 64512 860160

y y y y y O y= + + + − − +

 

 

We make two observations:

 

•

 

As 0y 

 

y, our approximation becomes

 

2 3 41 1 1( ) 1
2 6 24

r x x x x x= + + + +

 

       which is the stability function for all the 4-stage    
Runge–Kutta methods of order four.

 

•

 

Because c   and δ   may be complex, the stability 
region of the

 

ETDRK4 method is four-dimensional 

and therefore quite difficult to represent. 
Unfortunately, we do not know any expression for 

( , ) 1r x y =   we will only be able to plot it. The 

most common idea is to study it for each particular 
case; for example, assuming 

 

c

 

to be fixed and real 
in [21] or that both   c and δ

 

are pure imaginary 
numbers in [24].
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Figure 1 : Boundary of stability regions for several negativey 

 

Figure 2 : Experimental boundaries and ellipse for y=−75 

 For dissipative PDEs with periodic boundary 
conditions, the scalars c   that arise with a Fourier 
spectral method are negative.  Let us take for example 
Burger’s equation

 
21( )

2t xx xu u uε= − [ , ]x π π∈ −  
where

 0 1ε< 
 
(3.4)

 

 
Transforming it to the Fourier space gives

 

                 

2 2

2t
iu u uζεζ= − −       ζ∀

 
              

 
(3.5)

       

                           

 

where ζ∀
 
is the Fourier wave-number and the 

coefficients 2 0c εζ= − <
 
, span over a wide range of 

values when all the Fourier modes are considered. For 

high values of  ζ   the solutions are attracted to the 

slow manifold quickly because 0c <   and  1c <<  .

 

In

 

Figure.1

 

we draw the boundary stability 
regions in the complex plane

 

x

 

for
y=0,-0.9,-5,-10,-18 . When the linear part is zero          

( 0y =

 

), we recognized the stability region of the 
fourth-order Runge–Kutta methods and, as y −∞ , 
the region grows. Of course, these regions only give an 
indication of the stability of the method.

 

In fact, for 0y < ,

 

1y <<   the boundaries that 

are observed approach to ellipses whose parameters 
have been fitted numerically with the following result.

                     

2
2 2Im( )(Re( ))

0.7
xx y + = 

 
                (3.6)
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In Figure 2 we draw the experimental 
boundaries and the ellipses (3.6) with 75y = − .The 



 spectrum of the linear operator increases as 2ζ  ,

 

while 
the eigenvalues

 

of the linearization of the nonlinear part 
lay on the imaginary axis and increase as ζ . On the 

other hand, according to (3.6), when Re( ) 0x = , the 

intersection with the imaginary axis  Im( )x  increases as 

y

 

, i.e., as 2ζ .Since the boundary of stability grows 

faster than , the ETDRK4 method should have a very 
good behavior to solve Burger’s equation, which 
confirms the results of paper [6].

 
IV.

 

The Kuramoto-Sivashinsky 
Equation

 
The Kuramoto-Sivashinsky equation (K-S), is  

one of the simplest PDEs capable of describing 
complex behavior in both time and space. This equation 
has been of mathematical interest because of its rich 
dynamical properties. In physical terms, this equation 
describes reaction diffusion problems, and the 
dynamics of viscous-fuid films  flowing along walls.

 

Kuramoto-Sivashinsky equation in one space 
dimension can be written

 
4

4

2

2 ),(),(),(),(),(
x

txu
x

txu
x

txutxu
t

txu
∂

∂
−

∂
∂

−
∂

∂
−=

∂
∂

 

(4.1)

 
or in form

 
02/

224 =+++ ∇∇∇ uuuut  

Equation (4.1) can be written in integral form if 
we introduce 

t
txtxu

∂
∂

=
),(),( ζ

 

then 

4

4

2

22 ),(),(),(
2
1),(

x
tx

x
tx

x
tx

t
tx

∂
∂

−
∂

∂
−








∂
∂

−=
∂

∂ ζζζζ
 (4.2) 

The Kuramoto-Sivashinsky equation with 2L 
periodic boundary conditions in Fourier space can be 
written as follows 

                           
∑

−

=

=
1

0

~)(
τ πN

k

L
xik

kj euxu
                    (4.3)

 

                           
∑

−

=

=
1

0

~),(
τ πN

k

L
xik

kj eutxu
                  (4.4)

 

                      
∑

−

=

=
∂

∂ 1

0

~
~),( τ πN

k

L
xik

k
kj eu

dt
ud

t
txu

             (4.5)
 

                     
∑

−

=

=
∂

∂ 1

0

~),( τ ππN

k

L
xik

k
j eu

L
ik

x
txu

            (4.6)
 

              
∑

−

=






=

∂

∂ 1

0

2

2

2
~),( τ ππN

k

L
xik

k
j eu

L
ik

x
txu

          (4.7)
 

              
∑

−

=






=

∂

∂ 1

0

4

4

4
~),( τ ππN

k

L
xik

k
j eu

L
ik

x
txu

        (4.8)
 

If we substitute (4.3), (4.4), (4.5), (4.6), (4.7), 
(4.8) into (4.1) we get 


















−


















−
























−=⇔

∂

∂
−

∂

∂
−

∂

∂
−=

∂

∂
⇔

∂
∂

−
∂

∂
−

∂
∂

−=
∂

∂

∑∑∑∑∑
−

=

−

=

−

=

−

=

−

=

1

0

41

0

21

0

1

0

1

0

4

4

2

2

4

4

2

2

~~~*~
~

),(),(),(
),(

),(),(),(),(),(),(

τττττ πππππ πππ N

k

L
xik

k

N

k

L
xik

k

N

k

L
xik

k

N

k

L
xik

k

N

k

L
xik

k

jjj
j

j

eeeee u
L

iku
L

iku
L

iku
dt
ud

x
txu

x
txu

x
txu

txu
t

txu
x

txu
x

txu
x

txutxu
t

txu

 

By simplifying  and note that
 

ττ

τ

NijkN

j
jk eu

N
u

/21

0

1~
−−

=
∑= , 14,12 =−= 











 ii

 

τN
Lhjhjx 2, ==

 

 

Equation  (4.1)   can be written as fellows

 

                                                               ( ) ϖ kk
k iktu
t

tu kk 2
)(~)(~

42 −−=
∂

∂

 

                                       (4.9)
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Where  == ∫
−

dxtxu
L

L

L

L
xik

k e
π

ϖ ),(
2
1 2 [ ]2

/21

0
)(),(21 tuFFTetx

N

NijkN

j
ju =

−−

=
∑

ττ

τ

 

In final form will be  

           
( ) ϖ kk

k ik
tu

t
tu kk 2

)(~)(~
42 −−=

∂
∂

           (4.9) 

Equation has strong dissipative dynamics, 

which arise from the fourth order dissipation 
4

4
( , )u x t
x

∂
∂

  

term that provides damping at small scales. Also, it 
includes the mechanisms of a linear negative diffusion 

2

2
( , )u x t
x

∂
∂

  term, which is responsible for an instability of 

modes with large wavelength,i.e  small wave-numbers. 

The nonlinear advection/steepening  
( , )( , ) u x tu x t
x

∂
∂

term in the equation transforms energy between large 
and small scales.                       

 Figure 3 :

 

The growth rate   for perturbations of the 

form t ikxe eλ   to the zero solution of the Kuramoto-
Sivashinsky (K-S) equation

 

The zero solution of the K-S equation is linearly 
unstable (the growth rate

 

( ) 0kλ >

 

for perturbations of 

the form  t ikxe eλ   to modes with wave-numbers 

2 1k π
ϑ

= <

 

for a wavelength ϑ and is damped for 

modes with 1k > see Figure3:

 

these modes are

 

coupled to each other through the non-linear term.

 

The stiffness in the system (4.9) is due to the 

fact that the diagonal linear operator ( )kk 42 − ,with

 

the 

elements , has some large negative real eigenvalues 
that represent decay, because of the strong dissipation, 
on a time scale much shorter than that typical of the 
nonlinear term. The nature of the solutions to the the 
Kuramoto-Sivashinsky equation varies with the system 
size of  linear operator. For large size of linear operator, 
enough unstable Fourier modes exist to make the 
system chaotic. For small size of linear operator, 
insuffcient Fourier modes exist, causing the system to 
approach a steady state solution. In this case, the 
exponential time differencing methods integrate the 
system much more accurately than other methods since 
the the exponential time differencing methods assume in 
their derivation that the solution varies slowly in time.

 

V.

 

Numerical Result

 

For the simulation tests, we choose two periodic initial conditions

 

 

[ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

 

[ ]π4,0),sin(4.2)cos(6.0
2

sin1.0
2

cos7.1)(2 ∈++





+






= xxxxxxu

When evaluating the coefficients of the 
exponential time differencing  and the exponential time 
differencing Runge- Kutta methods via the "Cauchy 
integral" approach ]6[],5[   we choose circular contours 
of radius R = 1.  Each contour is centered at one of the 

elements that are on the diagonal matrix of the linear 
part of the semi-discretized model. We integrate the 
system (4.9) using fourth-order Runge Kutta exponential 
time differencing scheme using 64=N τ

 
with time-

step size 102 −=∆ et  . 
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Figure 4 : Time evolution of the numerical solution of the 
Kuramoto-Sivashinsky up to t = 60 with the initial 

condition [ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 :

 

Time evolution of the numerical solution of the 
Kuramoto-Sivashinsky up to

 

t = 60 with the initial 

condition [ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

 

The solution, in the Figure 5

 

with the initial 

condition [ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

  with 64=N τ

 

and  

time-step size 102 −=∆ et

 

, appears as a mesh plot 
and shows waves propagating, traveling periodically in 
time and persisting without change of shape.

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 : Time evolution of the numerical solution                     
of the Kuramoto-Sivashinsky up to t = 60                               

with the initial condition
[ ]π4,0),sin(4.2)cos(6.0
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In the Figure 6 with the initial condition 
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 with  

64=N τ
and  time-step size 102 −=∆ et ,  the 

solution appears as a mesh plot and shows waves 
propagating, traveling periodically in time and persisting 
without change of shape. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 : Time evolution of the numerical solution of the 
Kuramoto-Sivashinsky up to t = 60 with the initial 

condition [ ]π4,0),2/sin()(1 ∈= xxxu  

In the Figure 7 with the initial condition

[ ]π4,0),2/sin()(1 ∈= xxxu   with 64=N τ
 and  time-step 

size 102 −=∆ et  ,  the solution appears more clear as 
a mesh plot and shows waves propagating, traveling 
periodically in time and persisting without change of 
shape. 
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VI. Conclusions 

The proposers of the ETDRK schemes in [12] 
concluded that they are more accurate than other 
methods (standard integrating factor techniques or 
linearly implicit schemes); they have good stability 
properties and are widely applicable to nonlinear wave 
equations. However, Cox and Matthews were aware of 
the numerical instability for the ETDRK4 method when 
computing the coefficients. Later, Kassan and Trefethen 
in [6] modified the ETDRK4 method with very good 
results. In the opinion of these authors, the modified 
ETDRK4 is the best by a clear margin compared with 
others methods.We have computed and studied the 
numerical stability function of the ETDRK4 methods. In 
addition, we have applied this method to the Kuramoto-
Sivashinsky equation, achieving the excellent results that 
we have just mentioned. In order to achieve this, we  
applied Fourier spectral approximation for the spatial 
discretization. .For the simulation tests, we chose 
periodic boundary conditions and applied Fourier 
spectral approximation for the spatial discretization. . 
The equations can be used repeatedly with necessary 
adaptations of the initial conditions.  
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