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6

Abstract7

In this paper I presented a numerical technique for solving Kuramoto-Sivashinsky equation,8

based on spectral Fourier methods. This equation describes reaction diffusion problems, and9

the dynamics of viscous-fuid films flowing along walls. After we wrote the equation in Furie10

space, we get a system. In this case, the exponential time differencing methods integrate the11

system much more accurately than other methods since the exponential time differencing12

methods assume in their derivation that the solution varies slowly in time. When evaluating13

the coefficients of the exponential time differencing and the exponential time differencing14

Runge Kutta methods via the?Cauchy integral?. All computational work is done with Matlab15

package.16

17

Index terms— discrete fourier transform, exponential time differencing, exponential time differencing runge18
kutta methods, cauchy integral, kuramoto-sivashinsky eq19

1 Introduction20

ourier analysis occurs in the modeling of timedependent phenomena that are exactly or approximately periodic.21
Examples of this include the digital processing of information such as speech; the analysis of natural phenomen22
such as earthquakes; in the study of vibrations of spherical, circular or rectangular structures; and in the23
processing of images. In a typical case, Fourier spectral methods write the solution to the partial differential24
equation as its Fourier series. Fourier series decomposes a periodic realvalued function of real argument into a25
sum of simple oscillating trigonometric functions (??????????, ??????????????), that can be recombined to obtain26
the original function. Substituting this series into the partial differential equation gives a system of ordinary27
differential equations for the time-dependent coefficients of the trigonometric terms in the series then we choose28
a timestepping method to solve those ordinary differential equations II.29

2 Fourier Series30

The Fourier series of a smooth and periodic real-valued function ð�??”ð�??”(??) ? [0; 2??] with period 2?? is L x31
n x f L a L n ) sin( ) ( 1 2 0 ? ? = .... 2 , 1 , 0 = n (2) dx L x n x f L b L n ) cos( ) ( 1 2 0 ? ? = .... 2 , 1 = n (3)32

Fourier series can be expressed neatly in complex form as follows ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? ?33
? ? ? ? + + = 1 2 2 2 f(x) n L x in L x in n L x in L x in34

3 Discrete Fourier Transform35

In many applications, particularly in analyzing of real situations, the function ( ) f x to be approximated is known36
only on a discrete set of ”sampling points” of x. Hence, the integral (7) cannot be evaluated in a closed form and37
Fourier analysis cannot be applied directly. It then becomes necessary to replace continuous Fourier analysis by38
a discrete version of it. The linear discrete Fourier transform of a periodic (discrete) sequence of complex values39
?? 0 , ?? 0 , ? , ?? ?? ?? ?1 with period ?? ?? ?? , is a sequence of periodic complex values ?? ? 0 , ?? ? 1 , ? ,40
?? ? ?? ?? ?1 defined by? ? = ? = 1 0 2 k 1 u ~? ? ? ? N j N k ij j e u N (8)41
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5 EXPONENTIAL TIME DIFFERENCING

The linear inverse transformation is? ? = = 1 0 2 k j u ? ? ? ? N k N k ij e (9)42
The most obvious application of discrete Fourier analysis consists in the numerical calculation of Fourier43

coefficients. Suppose we want to approximate a realvalued periodic function ( ) f x defined on the interval [0;44
2??] that is sampled with an even number N ? of gridpoints jh = j x ? N 2L h = 1 N 0,1,...., j ? = ? (10)45

by it is Fourier series. First we compute approximate values of the Fourier coefficients? ? = ? ? 1 0 2 k ) ( 146
c ~? ? ? ? N j N k ij e x f N (11)47

Because the discrete Fourier transform and its inverse exhibit periodicity with period ?? ?? , i.e. ?? ? ?? +48
?? ?? = ?? ? ?? (this property results from the periodic nature of ?? 2???????? ?? ?? ), it makes no sense to49
use more than ?? ?? terms in the series, and it suffices to calculate one full period. The Fourier series formed50
with the approximate coefficients is? + ? = ? ? 2 / 1 2 / 2 ) ( f ~?? ? ? N N k N k ij k e c x (11’)51

The function ð�??”ð�??” ?(??) not only approximates, but actually interpolates ð�??”ð�??”(??) at the sampling52
grid points ?? ??53

In matrix form, the discrete Fourier transform (8) can be written asj kj u M N ? 1 u ~k= 1 ,... 1 , 0 , ? = ?54
N j k (12)55

Where? kj kj M = and ? ? ? N i e 2 ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = 1) - 1)(N - (N 1) - 2(N 1 - N 1)56
- 3(N 1) - 2(N 1 - N 6 4 2 3 2 1 1 1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?57
M Similarly, the inverse discrete Fourier transform has the form k * j u ? kj M = 1 ,... 1 , 0 , ? = ? N j k (13)58
Where * * ? kj kj M = and ? ? ? N i e 2 * = where ð�??”ð�??” * is complex conjugate of ð�??”ð�??” ? ? ? ? ? ?59
? ? ? ? ? ? ? ? ? ? = 1) - 1)(N - (N * 1) - 2(N * 1 - N * 1) - 3(N * 1) - 2(N * 1 - N * 6 * 4 * 2 * 3 * 2 * * * 1 160
1 1 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?61

4 M62

The FFT algorithm reduces the computational work required to carry out a discrete Fourier transform by reducing63
the number of multiplications and additions of (13) , computational time is reduced from ??(?? 2 ?? ) to ??(??64
?? log ?? ?? ).65

To apply spectral methods to a partial differential equation we need to evaluate derivatives of functions.66
Suppose that we have a periodic real-valued function ( ) f x ? [0; 2??] with period 2?? that is discretized I with67
an even number N ? of grid points, so that the grid size ? N 2L h = .The complex form of the Fourier series68
representation of ( )f x is /2 /2 1 f ( ) N i kx L k k N x c e ? ? ? = ? + ? ? ? ? At 2 N k ? =69

the above series gives a term , and since it cannot be differentiated, we should set its derivative to be zero at70
the grid points. The numerical derivatives of the function ( ) f x can be illustrated as a matrix multiplication.For71
the first derivative, we multiply the Fourier coefficients (11) by the corresponding differentiation matrix for an72
even number N ? of grid points. N N i Diag L ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ?73

This matrix has non-zero elements only on the diagonal. For an odd number N ? of grid points the74
differentiation matrix corresponding to the first derivative is diagonal with elements.75

0,1, 2,3...., 1, 0, 1 ,...., 3 2 1 2 2N N i L ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?76
Then, we compute an inverse discrete Fourier transform using (11 ? ) to return to the physical space and deduce77

the first derivative of f (x) on the grid. Similarly, taking the second derivative corresponds to the multiplication78
of the Fourier coefficients (11) by the corresponding differentiation matrix for an even number N ? of grid points.79
N N N i Diag L ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?80

In general, in case of an even number N ? of grid points approximating the m -th numerical derivatives of81
a grid function ( ) f x corresponds to the multiplication of the Fourier coefficients (11) by the corresponding82
differentiation matrix which is diagonal with elementsm ik L ? ? ? ? ? ? ? for 0,1, 2,3...., 1, , 1 ,...., 3 2 1 2 2 283
N N N k ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ?84

with the exception that for odd derivatives we set the derivative of the highest mode85

5 Exponential Time Differencing86

The family of exponential time differencing schemes. This class of schemes is especially suited to semi-linear87
problems which can be split into a linear part which contains the stiffest part of the dynamics of the problem,88
and a nonlinear part, which varies more slowly than the linear part. Exponential time differencing schemes89
are time integration methods that can be efficiently combined with spatial approximations to provide accurate90
smooth solutions for stiff or highly oscillatory semi-linear partial differential equations.In this paper I will present91
the derivation of the explicit Exponential time differencing schemes for arbitrary order following the approach in92
[ ] [ ] [ ] t t = to t t t t n n ? + = = +1 to obtain. ? ? ? d t t u F t u t u t n n t c t c n n e e ? ? ? ? + + + +93
= 0 1 ) ), ( ( * ) ( ) ( (?? 1 )94

The next step is to derive approximations to the integral in equation (?? 1 ). This procedure does not introduce95
an unwanted fast time scale into the solution and the schemes can be generalized to arbitrary order.96

If we apply the Newton Backward Difference Formula, we can write a polynomial approximation to ) ), ( (? ?97
+ + n n t t u F in the form ( ) ( ) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? = ? ? ? ? ? ? ? ? ? =98
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? + + ? ? ? n t G m t t u F k m m99
t n t G m m t t t G t t u F n k n k n m k m s m m n s m m n n n ), ( ) 1 ( * / ) 1 ( * / ) 1 ( , ) ), ( ( 0 1 0 1 0 ?100
? ? ? (?? 2 ) 1 ,..., 1 ), 1 )...( 2 )( 1 ( ! ? = + ? ? ? = ? ? ? ? ? ? ? ? s m k m m m k m k note that 1 0 ! 0 =101
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? ? ? ? ? ? ? ? m If we substitute (?? 2 ) into (?? 1 ) we get ? ? d n t G m m t t u t u t n s m m t c t c n n e102
e ? ? ? ? ? ? ? ? ? ? ? ? = ? ? + ? ? ? ? ? ? ? ? ? ? ? ? + = 0 1 0 1 * / ) 1 ( * ) ( ) ( ) / ( * / * ) 1 ( ) ( ) (103
1 0 ) / 1 ( 1 0 1 t d n t G m m t t t u t u n t t c s m m t c n n e e ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ?104
? ? ? ? ? ? ? ? = ? + ? ? ? (?? 3 )105

We will indicate the integral by) / ( / 1 0 ) / 1 ( t d m t e t t c m ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ?106
(?? 4 )107

If we substitute (?? 2 ) and (?? 4 ) into (?? 3 ) we get ( )k n k n m k m s m m m t c n n t t u F k m t t u t u108
e ? ? = ? = ? + ? ? ? ? ? ? ? ? ? ? ? ? ? + = ), ( ) 1 ( * * ) 1 ( ) ( ) ( 0 1 0 1 ? (?? 5 )109

Which represent the general generating formula of the exponential time differencing schemes of order s The110
first-order exponential time differencing scheme is obtained by setting s=1c F u u n t c t c n n e e / ) 1 ( 1 ? +111
= ? ? +112

The second-order exponential time differencing scheme is obtained by setting s=2{ } ) /( ) 1 ( ) 1 2 ) 1 (( 2 1113
1 t c F t c F t c t c u u n t c n t c t c n n e e e ? + ? + ? + ? ? ? + ? + = ? ? ? ? +114

6 ?115

By setting s=2 we get the fourth-order exponential time differencing scheme ) 6 /( ) ( 3 4 3 4 2 3 1 2 1 1 t c F F116
F F u u n n n n t c n n e ? ? ? + ? ? ? + = ? ? ? ? + 6 18 2611 24 ) 6 12 11 6 ( 2 2 3 3 2 2 3 3 1 ? ? ? ? ? ?117
? + ? + ? + ? = ? ? t c? = ? + ? + ? ? ? ? ? ? ? . I V.118

On the Stability of Etdrk4 Method119
The stability analysis of the ETDRK4 method is as follows (see ??21, ??4] , , , , ? ? ? ? ? by the120

above expressions suffers from numerical instability for y close to zero. Because of that, for small y , instead of121
them, we will use their asymptotic expansions. ? Because c and ? may be complex, the stability region of the122
ETDRK4 method is four-dimensional and therefore quite difficult to represent. Unfortunately, we do not know123
any expression for ( , ) 1 r x y = we will only be able to plot it. The most common idea is to study it for each124
particular case; for example, assuming c to be fixed and real in ??21] or that both c and ? are pure imaginary125
numbers in ??24]. For dissipative PDEs with periodic boundary conditions, the scalars c that arise with a Fourier126
spectral method are negative. Let us take for example Burger’s equation2 1 ( ) 2 t xx x u u u ? = ? [ , ] x ? ? ?127
?128

where 0 1 ? < ? (3.4) Transforming it to the Fourier space gives In Figure ?? 1 we draw the boundary stability129
regions in the complex plane x for y=0,-0.9,-5,-10,-18 .130

When the linear part is zero ( 0 y = ), we recognized the stability region of the fourth-order Runge-Kutta131
methods and, as y ?? ?132

, the region grows. Of course, these regions only give an indication of the stability of the method. In 0 y < ,133
1 y « the boundaries that are observed approach to ellipses whose parameters have been fitted numerically with134
the following result. x = , the intersection with the imaginary axis Im( )135

x increases as y , i.e., as 2136
? .Since the boundary of stability grows faster than , the ETDRK4 method should have a very good behavior137

to solve Burger’s equation, which confirms the results of paper [6].138
VI.139

7 Exponential Time Differencing Runge-Kutta Methods140

Generally, for the one-step time-discretization methods and the Runge-Kutta methods, all the information141
required to start the integration is available.However, for the multi-step time-discretization methods this is142
not true.These methods require the evaluations of a certain number of starting values of the nonlinear term ) ),143
( ( t t u F at the n -th and previous time steps to build the history required for the calculations.Therefore, it is144
desirable to construct exponential time differencing methods that are based on Runge-Kutta methods.145

8 Based in [ ]146

12 and [ ] = + ? ? ? + ? ? ? + ? ? + ? + + ? + + ? ? ? + ? ? + ? ? ? + ? ? (?? 12 )147
In general, the exponential time differencing Runge-Kutta method (?? 12 ) has classical order four, but148

Hochbruck and Ostermann ??11] showed that this method suffers from an order reduction. They also presented149
numerical experiments which show that the order reduction, predicted by their theory, may in fact arise in150
practical examples. In the worst case, this leads to an order reduction to order three for the Cox and Matthews151
method (?? 12 ) ??12] . However, for certain problems, such the numerical experiments conducted by ??assam152
and Trefethen [13] , [6] for solving various one-dimensional diffusion-type problems, and the numerical results153
obtained in for solving some dissipative and dispersive PDEs, the fourth-order convergence of the fourth-order154
Runge Kutta exponential time differencing method [12] is confirmed numerically.155

Finally, we note that as 0 c ? in the coefficients of the s -order exponential time differencing Runge-Kutta156
methods, the methods reduce to the corresponding order of the Runge-Kutta schemes.157

V.158
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12 CONCLUSIONS

9 The Kuramoto-Sivashinsky Equation159

The Kuramoto-Sivashinsky equation,is one of the simplest PDEs capable of describing complex behavior in both160
time and space. This equation has been of mathematical interest because of its rich dynamical properties. In161
physical terms, this equation describes reaction diffusion problems, and the dynamics of viscousfuid films flowing162
along walls.163

Kuramoto-Sivashinsky equation in one space dimension can be written4 42 2 ) , ( ) , ( ) , ( ) , ( ) , ( x tx164
u x t x u x t x u t x u t t x u ? ? ? ? ? ? ? ? ? = ? ? (14)165

Equation ( ??4) can be written in integral form if we introducet t x t x u ? ? = ) , ( ) , ( ? then 4 4 2 2 2 ) ,166
( ) , ( ) , (21 ) , ( x t x x t x x t x t t x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? (15) or in form 0 2 / 2 2 4167
= + + + ? ? ? u u u ut168

The Kuramoto-Sivashinsky equation with 2?? periodic boundary conditions in Fourier space can be written169
as follows ??4) can be written as fellows ?? )? ? = = 1 0 ) ( ? ? N k L x ik k j e u x u? ? ? ? ? ? ? ? ? ? ? ?170
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = â??” ? ? ? ? ? ? ? ? ?171
= ? ? â??” ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ?= ? = , 1 4 , 1 2 = ? = ? ? ? ? ? ? ? ? ? ? ? ? i i ? N L h jh j x172
2 , = = Equation (? k k k ik t u t t u k k 2 ) ( ) ( ~4 2 ? ? = ? ? (17) Where = = ? ? dx t x u L L L L x ik k173
e ? ? ) , (21 2 [ ] 2 / 2 1 0 ) ( ) , ( 2 1 t u FFT e t x N N ijk N j j u = ? ? = ? ? ?174

In final form will be (175
)[ ] 2 4 2 ) ( 2 ) ( ) ( ~t u FFT ik t u t t u k k k k ? ? = ? ? (18)176
Equation has strong dissipative dynamics, which arise from the fourth order dissipation The stiffness in the177

system (17) is due to the fact that the diagonal linear operator ( )k k 4 2 ?178
, with the elements, has some large negative real eigenvalues that represent decay, because of the strong179

dissipation, on a time scale much shorter than that typical of the nonlinear term. The nature of the solutions180
to the the Kuramoto-Sivashinsky equation varies with the system size of linear operator. For large size of181
linear operator, enough unstable Fourier modes exist to make the system chaotic. For small size of linear182
operator, insuffcient Fourier modes exist, causing the system to approach a steady state solution. In this case,183
the exponential time differencing methods integrate the system very much more accurately than other methods184
since the the exponential time differencing methods assume in their derivation that the solution varies slowly in185
time.186

VI.187

10 Numerical Result188

For the simulation tests, we choose two periodic initial conditions[ ] ? 4 , 0 , ) ( 2 cos 1 ? = ? ? ? ? ? ? x x u e189
x [ ] ? 4 , 0 ), sin( 4 . 2 ) cos( 6 . 0 2 sin 1 . 0 2 cos 7 . 1 ) ( 2 ? + + ? ? ? ? ? ? + ? ? ? ? ? ? = x x x x x x u190

When evaluating the coefficients of the exponential time differencing and the exponential time differencing191
Runge Kutta methods via the ”Cauchy integral” approach , the solution appears more clear as a mesh plot and192
shows waves propagating, traveling periodically in time and persisting without change of shape.193

11 VII.194

12 Conclusions195

In this paper, the main objective of this study was for finding the solution of one dimensional semilinear fourth196
order hyperbolic Kuramoto-Sivashinsky equation, describing reaction diffusion problems, and the dynamics of197
viscous-fuid films flowing along walls. In order to achieve this, we applied Fourier spectral approximation for198
the spatial discretization. In addition, we evaluated the coeffcients of the exponential time differencing and199
the exponential time differencing -fourth order Runge Kutta methods via the ”Cauchy integral” .Some typical200
examples have been demonstrated in order to illustrate the efficiency and accuracy of the exponential time201
differencing methods technique in this case. For the simulation tests, we chose periodic boundary conditions and202
applied Fourier spectral approximation for the spatial discretization. In addition, we evaluated the coefficients203
of the Exponential Time Differencing Runge-Kutta methods via the ”Cauchy integral” approach. The equations204
can be used repeatedly with necessary adaptations of the initial conditions. 1205

1© 2014 Global Journals Inc. (US)
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( )
du t
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( )
dt =

+ ? (
)
u
t
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point
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) u
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