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Fourier Spectral Methods for Numerical Solving 
of the Kuramoto-Sivashinsky Equation 

Gentian Zavalani

Abstract-  In this paper I presented a numerical technique for 
solving Kuramoto-Sivashinsky equation, based on spectral 
Fourier methods. This equation describes reaction diffusion 
problems, and the dynamics of viscous-fuid films  flowing 
along walls. After we wrote the equation in Furie space, we get  
a system. In this case, the exponential time differencing  
methods integrate the system  much more accurately than 
other methods since  the exponential time differencing  
methods assume in their derivation that the solution varies 
slowly in time. When evaluating the coefficients of the 
exponential time differencing and the exponential time 
differencing Runge Kutta methods via the”Cauchy integral”. All  
computational  work is done with Matlab package. 
Keywords: discrete fourier transform, exponential time 
differencing, exponential time differencing runge kutta 
methods, cauchy integral, kuramoto-sivashinsky 
equation. 

I. Introduction 

ourier analysis occurs in the modeling of time-
dependent phenomena that are exactly or 
approximately periodic. Examples of this include 

the digital processing of information such as speech; 
the analysis of natural phenomen such as earthquakes; 
in the study of vibrations of spherical, circular or 
rectangular structures; and in the processing of images. 
In a typical case, Fourier spectral methods write the 
solution to the partial differential equation  as its Fourier 
series. Fourier series decomposes a periodic real-
valued function of real argument into a sum of simple 
oscillating trigonometric functions (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), that 
can be recombined to obtain the original function. 
Substituting this series into the partial differential 
equation gives a system of ordinary differential 
equations for the time-dependent coefficients of the 
trigonometric terms in the series then we choose a time-
stepping method to solve those ordinary differential 
equations  

II. Fourier Series 

The Fourier series of a smooth and periodic 
real-valued function 𝑓𝑓(𝑥𝑥) ∈ [0; 2𝐿𝐿]  
with period 2𝐿𝐿 is 
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Fourier series can be expressed neatly in 
complex form as follows 
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where the coefficients nc  
can be determined 

from the formulas of na and nb as 
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III.
 Discrete Fourier Transform

 

In many applications, particularly in analyzing of 
real situations, the function ( )f x to be approximated is 
known only on a discrete set of “sampling points" of x.

 

Hence, the integral (7) 
cannot be evaluated in a closed 

form and Fourier analysis cannot be applied directly. It 
then becomes necessary to replace continuous Fourier 
analysis by a discrete version of it.

 
The linear discrete 

Fourier transform of a periodic (discrete) sequence of 
complex values 𝑢𝑢0,𝑢𝑢0, … ,𝑢𝑢𝑁𝑁𝜏𝜏−1

 
with period 𝑢𝑢𝑁𝑁𝜏𝜏 , is a 

sequence of periodic complex values 𝑢𝑢�0,𝑢𝑢�1, … ,𝑢𝑢�𝑁𝑁𝜏𝜏−1
 

defined by
 

F 
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The linear inverse transformation is 
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The most obvious application of discrete Fourier 
analysis consists in the numerical calculation of Fourier 
coefficients. Suppose we want to approximate a real-
valued periodic function ( )f x  defined on the interval 

[0; 2𝐿𝐿]  that is sampled with an even number Nτ  of grid 

points 
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τN
2Lh =       1N0,1,....,j −= τ      

(10) 

by it is Fourier series. First we compute 
approximate values of the Fourier coefficients 
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Because the discrete Fourier transform and its 
inverse exhibit periodicity with period 𝑁𝑁𝜏𝜏 , i.e. 𝑢𝑢�𝑘𝑘 + 𝑁𝑁𝜏𝜏 =
𝑢𝑢�𝑘𝑘  (this property results from the periodic nature of 

𝑒𝑒
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁𝜏𝜏 ), it makes no sense to use more than 𝑁𝑁𝜏𝜏 terms in 

the series, and it suffices to calculate one full period. 
The Fourier series formed with the approximate 
coefficients is       

                       
∑

+−=

−

≈
2/

12/

2~)(f~
τ

τ

τ

πN

Nk

N
kij

k ecx
                    

 (11’) 

The function 𝑓𝑓(𝑥𝑥)   not only approximates, but 
actually interpolates 𝑓𝑓(𝑥𝑥)  at the sampling grid points  𝑥𝑥𝑗𝑗 
 In matrix form, the discrete Fourier transform (8) 
can be written as 
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Similarly, the inverse discrete Fourier transform has the form 
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The FFT algorithm reduces the computational 
work required to carry out a discrete Fourier transform 
by reducing the number of multiplications and additions 
of (13), computational time is reduced from 𝑂𝑂(𝑁𝑁2

𝜏𝜏) to 
𝑂𝑂(𝑁𝑁𝜏𝜏 log𝑁𝑁𝜏𝜏). 

To apply spectral methods to a partial 
differential equation we need to evaluate derivatives of 
functions. Suppose that we have a periodic real-valued 
function ( )f x ∈ [0; 2𝐿𝐿] with period 2𝐿𝐿 that is discretized  
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with an even number Nτ of grid points, so that the grid 



 
size 

τN
2Lh = .The complex form of the Fourier series 

representation of ( )f x
 

is 
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at the

 

grid point jh=jx ,  1N0,1,....,j −= τ ,  and since it 

cannot be  differentiated, we should set its derivative to 
be zero at the grid points. The numerical derivatives of 
the function ( )f x can be illustrated as a matrix 
multiplication.For the first derivative, we multiply the 
Fourier coefficients (11) by the corresponding 
differentiation matrix for an even number Nτ of grid 

points. 

                         

1 0,1, 2,3...., 1,0, 1 ,...., 3 2 1
2 2

N N iDiag
L

τ τ π  Λ = − − − − − −  
  

This matrix has non-zero elements only on the 
diagonal.

 
For an odd number Nτ of grid points the 

differentiation matrix corresponding to the first derivative 
is diagonal with elements. 

0,1, 2,3...., 1,0, 1 ,...., 3 2 1
2 2

N N i
L

τ τ π  − − − − − −  
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 Then, we compute an inverse discrete Fourier 
transform using (11′)

 
to return to the physical space 

and deduce the first derivative of f (x) on the grid. 
Similarly, taking the second derivative corresponds to 

 

 the
 
multiplication of the Fourier coefficients (11)

 
by the 

corresponding differentiation matrix for an even number 
Nτ of grid points.
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In general, in case of an even number Nτ of 

grid points approximating the   m -th  numerical 
derivatives of a grid function ( )f x   corresponds to the 
multiplication of the Fourier coefficients (11) by the 
corresponding differentiation matrix which is diagonal 

with elements
mik

L
π 

 
 

 

for 
 

0,1,2,3...., 1, , 1 ,...., 3 2 1
2 2 2

N N Nk τ τ τ = − − − − − − 
 

 

with the exception that for odd derivatives we set the 

derivative of the highest mode 
2

Nk τ=  to be zero. 

IV. Exponential Time Differencing 

The family of exponential time differencing  
schemes. This class of schemes is especially suited to 
semi-linear problems which can be split into a linear part 
which contains the stiffest part of the dynamics of the 
problem, and a nonlinear part, which varies more slowly 

than the linear part. Exponential time differencing 
schemes are time integration methods that can be 
efficiently combined with spatial approximations to 
provide accurate smooth solutions for stiff or highly 
oscillatory semi-linear partial differential equations.In this 
paper I will present the derivation of the explicit 
Exponential time differencing schemes for arbitrary 
order following the approach in [ ] [ ] [ ]2 , 4  and 
presents the explicit Runge-Kutta versions of these 
schemes constructed by Cox and Matthews [ ]12 . 

We consider for simplicity a single model of a 
stiff ordinary differential equation 

)),(()()( ttuFtcu
dt

tdu
+=  (𝑒𝑒) where )),(( ttuF  is the 

nonlinear forcing term. 
To derive the s -step Exponential time 

differencing schemes, we multiply through by the 
integrating factor e ct−

 and then integrate the equation 

over a single time step from ntt =
 

to 
tttt nn ∆+== +1

 
to obtain.
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The next step is to derive approximations to the 
integral in equation (𝑒𝑒1). This procedure does not 
introduce an unwanted fast time scale into the solution 
and the schemes can be generalized to arbitrary order.  

If we apply the Newton Backward Difference 
Formula, we  can  write  a  polynomial approximation  to

)),(( ττ ++ nn ttuF
 

in the form
 

( )

( )
  












−−
=

−

=











−

=

∇









−







 ∆−
−≈

≈∇






 ∆−
−=≈++

∑∑

∑

ntGm

ttuF
k
m

m
t

ntGm
m

t
ttGttuF

n

knkn

m

k

m
s

m

m

n

s

m

m
nnn

),()1(*
/

)1(

*
/

)1(,)),((

0

1

0

1

0

τ

τ
ττ

(𝑒𝑒2) 

1,...,1),1)...(2)(1(! −=+−−−=






 smkmmm
k
m

k  note that 1
0

!0 =






m
 

If we substitute  (𝑒𝑒2)  into (𝑒𝑒1)   we get 
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If we substitute  (𝑒𝑒2)  and (𝑒𝑒4)  into  (𝑒𝑒3)  we get
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Which represent the general generating formula 
of the exponential time differencing

 

schemes of order s

 

The first-order exponential time differencing

 

scheme is obtained by setting s=1
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The second-order exponential time differencing

 

scheme is obtained by setting s=2
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By setting s=2 we get the fourth-order exponential time differencing scheme
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V. On the Stability of Etdrk4  Method 

The stability analysis of the ETDRK4 method is as 
follows (see [21,24] or[12]). For the nonlinear ODE 

                    
)),(()()( ttuFtcu

dt
tdu

+=                     (3.1) 

with ( ( ), )F u t t the nonlinear part, we suppose 

that there exists a fixed point 0u  this means that 

0 0( , ) 0cu F u t+ = . Linearizing about this fixed point, if 

( )u t  is the perturbation of 0u  and  0'( , )F u tδ =  then 

( ) ( ) ( )du t cu t u t
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δ= +      (3.2) 

and the fixed point 0 ( )u t  is stable if  Re( ) 0c δ+ < . 

The application of the ETDRK4  method to (3.2)  
leads to a recurrence relation involving nu  and 1nu + . 

Introducing the previous notation x hδ=  and y ch= , 
and using the Mathematica© algebra   package, we 
obtain the following amplification factor 
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An important remark: computing 

0 1 2 3 4, , , ,     by the above expressions suffers from 

numerical instability for y close to zero. Because of that, 

for small y , instead of them, we will use their asymptotic 
expansions.

 

2 3 4 5 6
1

1 1 13 71 ( )
2 6 320 960

y y y y y O y= + + + + + +

 

2 3 4 5 6
2

1 1 1 247 131 479 ( )
2 2 4 2880 5760 96768

y y y y y O y= + + + + + +

 

2 3 4 5 6
3

1 1 61 1 1441 67 ( )
6 6 720 36 241920 120960

y y y y y O y= + + + + + +

 

2 3 4 5 6
4

1 1 7 19 311 479 ( )
24 32 640 11520 64512 860160

y y y y y O y= + + + − − +
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We make two observations: 
• As 0y  y, our approximation becomes 

                

2 3 41 1 1( ) 1
2 6 24

r x x x x x= + + + +  

which is the stability function for all the 4-stage 
Runge–Kutta methods of order four. 

• Because c  and δ  may be complex, the stability 
region of the 

ETDRK4 method is four-dimensional and therefore quite 
difficult to represent. Unfortunately, we do not know any 

expression for ( , ) 1r x y =  we will only be able to plot 

it. The most common idea is to study it for each 
particular case; for example, assuming c   to be fixed 
and real in [21] or that both c  and δ are pure imaginary 
numbers in [24]. 

 
 

Figure 1 :

 

Boundary of stability regions for several negativey
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Figure 2 : Experimental boundaries and ellipse for y=−75



  

 

 

    

  

 

 

 

  
  

 
 

 

 

 
 

 

  

 

 
 

 
 

 

© 2014   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

( 
  

)
V
ol
um

e 
 X

IV
  

Is
su

e 
 I
  

V
er
si
on

 I
  

  
  
 

  

37

Y
e
a
r

20
14

I

Fourier Spectral Methods for Numerical Solving of the Kuramoto-Sivashinsky Equation

For dissipative PDEs with periodic boundary 
conditions, the scalars c that arise with a Fourier spectral 
method are negative.  Let us take for example Burger’s 
equation

21( )
2t xx xu u uε= − [ , ]x π π∈ − where  0 1ε<  (3.4)

Transforming it to the Fourier space gives

                     

2 2

2t
iu u uζεζ= − −       ζ∀                   (3.5)

where ζ∀ is the Fourier wave-number and the 

coefficients 2 0c εζ= − < , span over a wide range of 
values when all the Fourier modes are considered. For 

high values of ζ   the solutions are attracted to the slow 

manifold quickly because 0c < and  1c << .

In Figure. 1 we draw the boundary stability 
regions in the complex plane x for y=0,-0.9,-5,-10,-18 . 

When the linear part is zero ( 0y = ), we recognized the 
stability region of the fourth-order Runge–Kutta methods 
and, as y −∞ , the region grows. Of course, these 
regions only give an indication of the stability of the 
method.

In 0y < , 1y << the boundaries that are 

observed approach to ellipses whose parameters have 
been fitted numerically with the following result.

               

2
2 2Im( )(Re( ))

0.7
xx y + = 

 
                     (3.6)

In Figure. 2 we draw the experimental boundaries 
and the ellipses (3.6) with 75y = − . The spectrum of the 
linear operator increases as 2ζ , while the eigenvalues of 
the linearization of the nonlinear part lay on the imaginary 
axis and increase as ζ . On the other hand, according to 
(3.6), when Re( ) 0x = , the intersection with the 
imaginary axis Im( )x increases as y , i.e., as 2ζ .Since 

the boundary of stability grows faster than , the ETDRK4 
method should have a very good behavior to solve 
Burger’s equation, which confirms the results of paper 
[6].

VI. Exponential Time Differencing               
Runge-Kutta Methods

Generally, for the one-step time-discretization 
methods and the Runge-Kutta methods, all the 
information required to start the integration is 
available.However, for the multi-step time-discretization 
methods this is not true.These methods require the 
evaluations of a certain number of starting values of the 
nonlinear term )),(( ttuF at the n -th and previous time 
steps to build the history required for the 
calculations.Therefore, it is desirable to construct 
exponential time differencing methods that are based on 
Runge-Kutta methods.

Based in [ ]12 and [ ]3 ,Putting s=1 in equation  (𝑠𝑠5) to 

get

cFua n
tctc

nn ee /)1( −+= ∆∆
(𝑠𝑠6)

The term na approximates the value of u at 

ttn ∆+
The next step is to approximate F in the interval

1+≤≤ nn ttt with

and substitute into  (𝑠𝑠1) yield

Equation (𝑠𝑠8) represent the first-order Runge 
Kutta exponential time differencing scheme

In a similar way, we can also form the second-
order Runge Kutta exponential time differencing scheme

cFua n
tctc

nn ee /)1( 2/2/ −+= ∆∆
   (𝑠𝑠9)

As we can see equation (𝑠𝑠9) is formed by 
taking half a step of (𝑠𝑠6)

The next step is to approximate  F in the interval

1+≤≤ nn ttt with

)())2/,((
2/
)( 2tOFttaF

t
tt

FF nnn
n

n ∆+−∆+
∆
−

+= (𝑠𝑠10 )

By substituting (𝑠𝑠9) into  (𝑠𝑠10 )   we get

)/()}2/,(()1(2)2)2{(( 2
1 tcttaFFtctctcuu nn

tctctc
nn eee ∆∆+−∆−++∆+−∆+= ∆∆∆

+ (𝑠𝑠11 )

By setting s=4  an fourth-order Runge Kutta exponential time differencing scheme is obtained as follows

cFua n
tctc

nn ee /)1( 2/2/ −+= ∆∆

cttaFub nnn
tctc

nn ee /)2/,()1( 2/2/ ∆+−+= ∆∆

for fact, 

)(/)),()(( 2tOtFttaFttFF nnnnn ∆+∆−∆+−+= (𝑠𝑠7)

)/()),()(1( 2
1 tcFttaFtcau nnn

tc
nn e ∆−∆+−∆−+= ∆

+ (𝑠𝑠8)
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cFttbFac nnn
tctc

nn ee /))2/,(2)(1( 2/2/ −∆+−+= ∆∆

2 2
1

2 2 2

{( 3 4) 4) 2(( 2) 2)( ( , / 2) ( , / 2)

(( 4) 3 4) ( , )} / ( )

c t c t c t

n n n n n n n

c t

n n

u u c t c t c t F c t c t F a t t F b t t

c t c t c t F c t t c t
e e e

e

∆ ∆ ∆

+

∆

= + ∆ − ∆ + − ∆ − + ∆ − + ∆ + + ∆ + + ∆

− ∆ + − ∆ + − ∆ − + ∆ ∆

(𝑠𝑠12 )

In general, the exponential time differencing 
Runge-Kutta method (𝑠𝑠12 ) has classical order four, but 
Hochbruck and Ostermann[11] showed that this method 
suffers from an order reduction. They also presented 
numerical experiments which show that the order 
reduction, predicted by their theory, may in fact arise in 
practical examples. In the worst case, this leads to an 
order reduction to order three for the Cox and Matthews 
method (𝑠𝑠12 ) [12]. However, for certain problems, such 
as the numerical experiments conducted by Kassam and 
Trefethen[13] ,[6] for solving various one-dimensional 
diffusion-type problems, and the numerical results 
obtained in  for solving some dissipative and dispersive 
PDEs, the fourth-order convergence of the fourth-order 
Runge Kutta exponential time differencing method [12] is 
confirmed numerically.

Finally, we note that as 0c → in the coefficients 
of the s -order exponential time differencing Runge-Kutta 
methods, the methods reduce to the corresponding order 
of the Runge-Kutta schemes.

V. The Kuramoto-Sivashinsky                  
Equation

The Kuramoto-Sivashinsky equation,is  one of the 
simplest PDEs capable of describing complex behavior in 
both time and space. This equation has been of 
mathematical interest because of its rich dynamical 
properties. In physical terms, this equation describes 
reaction diffusion problems, and the dynamics of viscous-
fuid films flowing along walls.

Kuramoto-Sivashinsky equation in one space 
dimension can be written

4

4

2

2 ),(),(),(),(),(
x

txu
x

txu
x

txutxu
t

txu
∂

∂
−

∂
∂

−
∂

∂
−=

∂
∂

(14)

Equation  (14) can be written in integral form if we 
introduce

t
txtxu

∂
∂

=
),(),( ζ

then

4

4

2

22 ),(),(),(
2
1),(

x
tx

x
tx

x
tx

t
tx

∂
∂

−
∂

∂
−








∂
∂

−=
∂

∂ ζζζζ
(15)

or in form

02/
224 =+++ ∇∇∇ uuuut

The Kuramoto-Sivashinsky equation with 2𝐿𝐿
periodic boundary conditions in Fourier space can be 
written as follows

                            
∑

−

=

=
1

0

~)(
τ πN

k

L
xik

kj euxu
                 (16)

                          
∑

−

=

=
1

0

~),(
τ πN

k

L
xik

kj eutxu
                 (16.1)

                  
∑

−

=

=
∂

∂ 1

0

~
~),( τ πN

k

L
xik

k
kj eu

dt
ud

t
txu

              (16.2)

                      
∑

−

=

=
∂

∂ 1

0

~),( τ ππN

k

L
xik

k
j eu

L
ik

x
txu

          (16.3)

             
∑

−

=






=

∂

∂ 1

0

2

2

2
~),( τ ππN

k

L
xik

k
j eu

L
ik

x
txu

            (16.4)

             
∑

−

=






=

∂

∂ 1

0

4

4

4
~),( τ ππN

k

L
xik

k
j eu

L
ik

x
txu

            (16.5)

If we substitute  into  (14)  we get


















−


















−
























−=⇔

∂

∂
−

∂

∂
−

∂

∂
−=

∂

∂
⇔

∂
∂

−
∂

∂
−

∂
∂

−=
∂

∂

∑∑∑∑∑
−

=

−

=

−

=

−

=

−

=

1

0

41

0

21

0

1

0

1

0

4

4

2

2

4

4

2

2

~~~*~
~

),(),(),(
),(

),(),(),(),(),(),(

τττττ πππππ πππ N

k

L
xik

k

N

k

L
xik

k

N

k

L
xik

k

N

k

L
xik

k

N

k

L
xik

k

jjj
j

j

eeeee u
L

iku
L

iku
L

iku
dt
ud

x
txu

x
txu

x
txu

txu
t

txu
x

txu
x

txu
x

txutxu
t

txu

By simplifying (16), (16.1), (16.2), (16.3), (16.4), (16.5) and note that
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ττ

τ

NijkN

j
jk eu

N
u

/21

0

1~
−−

=
∑= , 14,12 =−= 











 ii

τN
Lhjhjx 2, ==

Equation (14)  can be written as fellows

                                                                
( ) ϖ kk

k iktu
t
tu kk 2

)(~)(~
42 −−=

∂
∂

                                                            (17)

Where  == ∫
−

dxtxu
L

L

L

L
xik

k e
π

ϖ ),(
2
1 2 [ ]2

/21

0
)(),(21 tuFFTetx

N

NijkN

j
ju =

−−

=
∑

ττ

τ

In final form will be 

       ( ) [ ]242 )(
2

)(~)(~
tuFFTiktu

t
tu

k
k kk −−=
∂

∂
       (18)

Equation  has strong dissipative dynamics, which 

arise from the fourth order dissipation 
4

4
( , )u x t
x

∂
∂

term 

that provides damping at small scales. Also, it includes 

the mechanisms of a linear negative diffusion 
2

2
( , )u x t
x

∂
∂

term, which is responsible for an instability of modes 

with large wavelength,i.e  small wave-numbers. The 

nonlinear advection/steepening 
( , )( , ) u x tu x t
x

∂
∂

term in 

the equation transforms energy between large and small 

scales.
                     

Figure 3 : The growth rate ( )kλ for perturbations of the form t ikxe eλ to the zero solution of the                                 
Kuramoto-Sivashinsky (K-S) equation

The zero solution of the K-S equation is linearly 
unstable (the growth rate ( ) 0kλ > for perturbations of 

the form t ikxe eλ   to modes with wave-numbers 

2 1k π
ϑ

= < for a wavelength ϑ and is damped for 

modes with 1k > see Figure. 3  these modes are 

coupled to each other through the non-linear term.

The stiffness in the system (17) is due to the 

fact that the diagonal linear operator( )kk 42 − , with the 

elements,  has some large negative real eigenvalues 
that represent decay, because of the strong dissipation, 
on a time scale much shorter than that typical of the 
nonlinear term. The nature of the solutions to the the 
Kuramoto-Sivashinsky equation varies with the system 
size of linear operator. For large size of linear operator, 
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enough unstable Fourier modes exist to make the system 
chaotic. For small size of linear operator, insuffcient 
Fourier modes exist, causing the system to approach a 
steady state solution. In this case, the exponential time 
differencing methods integrate the system very much 
more accurately than other methods since the the 
exponential time differencing methods assume in their 
derivation that the solution varies slowly in time.

VI. Numerical Result

For the simulation tests, we choose two periodic 
initial conditions

[ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

[ ]π4,0),sin(4.2)cos(6.0
2

sin1.0
2

cos7.1)(2 ∈++





+






= xxxxxxu

When evaluating the coefficients of the 
exponential time differencing  and the exponential time 
differencing Runge Kutta methods via the "Cauchy 
integral" approach ]6[],5[ we choose circular contours of 
radius R = 1.  Each contour is centered at one of the 
elements that are on the diagonal matrix of the linear part 

of the semi-discretized model. We integrate the system 
(17) using fourth-order Runge Kutta exponential time 

differencing scheme using 64=N τ
with time-step size 

102 −=∆ et .

Figure 1 : Time evolution of the numerical solution of the Kuramoto-Sivashinsky up to                                                           

t = 60 with the initial condition [ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x
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Figure 2 : Time evolution of the numerical solution of the Kuramoto-Sivashinsky up to                                                           

t = 60 with the initial condition [ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

The solution, in the figure 1 with the initial 

condition [ ]π4,0,)( 2
cos

1 ∈= 







xxu e
x

with 64=N τ
and time-

step size 102 −=∆ et , appears as a mesh plot and 

shows waves propagating, traveling periodically in time 
and persisting without change of shap.

Figure 3 : Time evolution of the numerical solution of the Kuramoto-Sivashinsky up to

t = 60 with the initial condition
  

[ ]π4,0),sin(4.2)cos(6.0
2

sin1.0
2

cos7.1)(2 ∈++





+






= xxxxxxu

In the figure 2 with the initial condition 

[ ]π4,0),sin(4.2)cos(6.0
2

sin1.0
2

cos7.1)(2 ∈++





+






= xxxxxxu with 

64=N τ
and  time-step size 102 −=∆ et , the 

solution appears as a mesh plot and shows waves 
propagating, traveling periodically in time and persisting 
without change of shape.
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Figure 4 : Time evolution of the numerical solution of the Kuramoto-Sivashinsky up to
t = 60 with the initial condition [ ]π4,0),2/sin()(1 ∈= xxxu

In the figure 3 with the initial condition
[ ]π4,0),2/sin()(1 ∈= xxxu with 64=Nτ and  time-step size 

102 −=∆ et ,  the solution appears more clear as a 
mesh plot and shows waves propagating, traveling 
periodically in time and persisting without change of 
shape.

VII. Conclusions

In this paper, the main objective of this study was 
for finding the solution of one dimensional semilinear 
fourth order hyperbolic Kuramoto-Sivashinsky equation, 
describing reaction diffusion problems, and the dynamics 
of viscous-fuid films flowing along walls. In order to 
achieve this, we applied Fourier spectral approximation 
for the spatial discretization. In addition, we evaluated the 
coeffcients of the exponential time differencing and the 
exponential time differencing –fourth order Runge Kutta 
methods via the “Cauchy integral” .Some typical 
examples have been demonstrated in order to illustrate 
the efficiency and accuracy of the exponential time 
differencing methods technique in this case. For the 
simulation tests, we chose periodic boundary conditions 
and applied Fourier spectral approximation for the spatial 
discretization. In addition, we evaluated the coefficients of  
the Exponential Time Differencing Runge-Kutta  methods 
via the "Cauchy integral" approach. The equations can be 
used repeatedly with necessary adaptations of the initial 
conditions. 
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