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C0- Continuity Isoparametric Formulation using 
Trigonometric Displacement Functions for One 

Dimensional Elements
Esmaeil Asadzadeh α & Mehtab Alam σ

 This is an original research on the selection of the 
trigonometric shape functions in the finite element analysis of 
the one dimensional elements. A new family of C0- continuity 
elements is introduced using the trigonometric interpolation 
model. To relate the natural and global coordinate system for 
each element of specific structure (i.e. transformation 
mapping) in one dimensional element a new trigonometric 
function is used and the new determinant has been introduced 
instead of polynomial function and Jacobian determinant. The 
new introduced trigonometric determinant allows for the state 
of constant strain within the element satisfying the 
completeness requirement. However, this cannot be achieved 
using the Jacobian determinant to relate the coordinates while 
using the trigonometric functions. The finite element 
formulation presented in this paper gives comparable results 
with exact solution for all kinds of one dimensional analysis. 
Keywords: finite element method, c0- continuity element, 
trigonometric shape functions, isoparametric concept. 

  

inite element method (FEM) is the approximate 
piecewise analysis in the domain of interest, 
researchers have put in efforts to select an 

appropriate interpolating function which can very closely 
approximate the field variable and converge to the exact 
solution. Polynomials have been studied for many years, 
starting in the 19th century, and they have shown to 
have mostly good approximation properties. 
Nevertheless, they are not ‘‘good for all seasons’’ [1]. In 
[2], it was shown that for differential equations with 
rough coefficients, the finite element method using 
polynomial shape functions can lead to arbitrarily ‘‘bad’’ 
results. Effective shape functions should have good 
approximation properties in entire domain of the interest. 
To increase the accuracy of the solution various 
procedures for error estimation have been devised and 
mesh refinement is used. Various procedures exist for 
the refinement of finite element (FE) solutions.  More 
researches have been reported on the references                     
[4-14]. 

By considering the linear-strain triangular (LST) 
element it can be seen that the development of element 
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matrices and equations expressed in terms of a global 
coordinate system becomes an enormously difficult task 
[15]. The isoparametric method may appear somewhat 
tedious (and confusing initially), but it leads to a simple 
computer program formulation, and it is generally 
applicable for one-, two- and three-dimensional stress 
analysis and for nonstructural problems. The 
isoparametric formulation allows elements to be created 
that are nonrectangular and have curved sides [16]. 

In this paper, we first illustrate the trigonometric 
isoparametric formulation to develop the shape 
functions of C0 continuity of the family of one 
dimensional bar elements and to derive the strain matrix, 
stiffness matrix and then force vector. Use of the bar 
element makes it relatively easy to understand the 
method because it involves simple expressions. Then 
quantitative concepts for assessing and comparing 
effectiveness of these families of shape functions are 
given. Focus on the principles that should govern the 
selection of the trigonometric shape functions are 
discussed, and one dimensional elements are studied 
by employing these new shape functions obtained from 
trigonometric displacement functions to analyze the 
bars carrying the self-weight and the results have been 
compared with the exact solutions of classical methods 
of solid mechanics.  

II. Isoparametric Concept and 
Coordinate Systems 

The term isoparametric is derived from the use 
of the same shape functions (or interpolation functions) 
to define the element’s geometric shape as are used                
to define the displacements within the element. 
Isoparametric element equations are formulated using a 
natural (or intrinsic) coordinate system T that is defined 
by element geometry and not by the element orientation 
in the global coordinate system. In other words, axial 
coordinate T is attached to the bar and remains directed 
along the axial length of the bar, regardless of how the 
bar is oriented in space [16]. The relationship between 
the natural coordinate system T and the global 
coordinate system X for each element of specific 
structure is called the transformation mapping and must 
be used in the element equation formulations. The 
coordinate systems are shown in fig. 1. 
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I. Introduction

Abstract-

F



 

Figure

 

1

 

:

 

Bar element in (a) a global coordinate system X and (b) a natural coordinate system T

 

The natural coordinate system T

 

is a 
dimensionless quantity varying from T1 to

 

T2 at node 1 
and node 2 respectively. In natural coordinate system 
the position of any point inside the element is varying by 
Sin (αT). The natural coordinate system is attached to 
the element, with the origin located at its center, as 
shown in Fig. 1(b). The T

 

axis needs not be parallel to 
the x

 

axis, this is only for convenience.

 

For the special case consider a circle of unit 
radius shown in Fig.2, when the T

 

and x

 

axes are inside 
the circle and parallel to each other. The

 

T

 

and x

 

axes 
having the origin located at the center of the element are 
coincided at the center of the circle (𝑋𝑋𝑐𝑐 =

 

𝑥𝑥1+𝑥𝑥2
2

). For the 

special case when α=

 

𝜋𝜋
2

 

and the −1

 

≤ 𝑇𝑇

 

≤ 1

 

and 
−1

 

≤ 𝑥𝑥

 

≤ 1

 

the global and natural coordinates can be 
related by 

 

                             𝑋𝑋 = 𝑋𝑋𝑐𝑐 + 𝐿𝐿
2

sin(𝜋𝜋
2
𝑇𝑇)                         

 

(1)

 

Where  𝑋𝑋𝑐𝑐

 

is the global coordinate of the 
element’s centroid.

 

Figure

 

2

 

:

 

Transformation mapping of global and natural 
coordinate system for bar element inside a circle

 
The displacement function within the bar which 

relates the displacement at any point inside the element 
to the nodal displacements is given by

 

                                U = ∑ NiUi                                     (2)

 

The function which relates the coordinate of any 
point within the element to the global coordinate is given 
by 

 

                                      

 

X = ∑ NiXi                                (3)

 

By using the equation (3) the shape functions 
have been used for coordinate transformation from 
natural coordinate system to

 

the global Cartesian 
system and mapping of the parent element to required 
shape in global system successfully achieved. This 
formula is given by Taig [17].

 

In Eq. (3) the summation is over the number of 
nodes of the element. N is the shape function, Ui are the 
nodal displacements and Xi is the coordinates of nodal 
points of the element. The shape functions are to be 
expressed in natural coordinate system.

 

The equations (2) and (3) can be written in 
matrix form as

 

                                   {U} = [N] {U}e                          (4)

 
                             {X} = [N] {X}e                                 (5)

 
Where {U} is vector of displacement at any 

point, {U}e is vector of nodal displacements, {X}e is the 
vector of nodal coordinates and {X} is the vector of 
coordinate of any point in global system.

 
III.

 

Interpolation

 

Model

 

and

 

Shape

 
Functions

 

for

 

Two

 

Nodded

 
Element

 
The quality of approximation achieved by 

Rayleigh–Ritz and FE approaches depends on the 
admissible assumed trial, field or shape functions. 
These functions can be chosen in many different ways. 
The most universally preferred method is the use of 
simple polynomials. It is also possible to use other 
functions such as trigonometric functions [18, 19]. While  
choosing  the interpolation model and shape functions, 
the  following  considerations  have  to  be  taken  into  
account[3, 20].

 
a)

 

To ensure convergence to the correct result certain 
simple requirements must be satisfied as following 
criteria.

 

C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
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Criterion 1. The displacement shape functions chosen 
should be such that they do not permit straining of an 



  
element to occur when the nodal displacements are 
caused by a rigid body motion.

 Criterion
 
2.

 
The

 

displacement shape functions have to 
be of such forms that if nodal displacements are 
compatible with a constant strain condition such 
constant strain will in fact be obtained.

 Criterion
 
3.

 
The displacement shape functions should be 

chosen such that the strains at the interface between 
elements are finite (even though they may be 
discontinuous).

 

b)
 

The  pattern  of variation  of the  field  variable  
resulting  from  the  interpolation model should  be  
independent  of  the  local  coordinate  system.

 

c)
 

The  number  of  generalized  coordinates  should  
be  equal  to  the  number  of nodal  degrees  of  
freedom  of  the  element.

 

The interpolation model of the field variable 
(displacement model inside the element) in terms of 
nodal degrees of freedom is given by trigonometric sine 
function as

 

Figure

 

3

 

:

 

Two nodded bar element and variation of displacement inside the element in natural 

                                   

coordinate system for −1 ≤ 𝑇𝑇 ≤ 1

𝑈𝑈(𝑇𝑇) = 𝑎𝑎1 + 𝑎𝑎𝑛𝑛 sin(𝜋𝜋
2
𝑇𝑇)     Where

     

−1

 

≤ 𝑇𝑇

 

≤ 1      (6)

 
Where a1

 

and an,

 

are the coefficients known as 
generalized coordinates and must be equal to the 
number of nodal unknowns M. In equation (6), the  
nodal  values  of  the  solution,  also  known  as  nodal  
degrees  of  freedom,  are  treated  as  unknowns  in  
formulating  the  system  or  overall  equations.  To 
express the interpolation model in  terms  of  the  nodal  
degrees of  freedom  of  a  typical  finite  element  e 
having M

 

nodes, the values  of  the  field  variable  at  
the  nodes  can be evaluated by  substituting  the  nodal 
coordinates  into  the Eq. (6). The Eq. (6) can be 
expressed in general form of 

 

                                    

  

𝑈𝑈���⃗ (T)

 

=

 

ɳ�⃗ �⃗�𝑎                                  (7)

 
Where, 𝑈𝑈��⃗ (T) =

 

𝑈𝑈(𝑇𝑇),

 
                              ɳ�⃗ 𝑇𝑇= {1   sin (𝜋𝜋

2

 

T)}                           (8)

 
𝑈𝑈(1) = 𝑎𝑎1 +

 

𝑎𝑎2 sin(−
𝜋𝜋
2)

 𝑈𝑈(2) = 𝑎𝑎1 +

 

𝑎𝑎2 sin(
𝜋𝜋
2

)

 And,                               �⃗�𝑎 = �
𝑎𝑎1
𝑎𝑎2
�

 
The evaluation of equation (7) at the various 

nodes of element e gives

 

                                    

           

  

�𝑈𝑈
��⃗ (𝑎𝑎𝑎𝑎

  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

1)
𝑈𝑈��⃗ (𝑎𝑎𝑎𝑎

  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

2)
�

(𝑛𝑛)

=

 

𝑈𝑈��⃗ (e)

 

= �ɳ�⃗
𝑇𝑇(𝑎𝑎𝑎𝑎

  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

1)
ɳ�⃗ 𝑇𝑇(𝑎𝑎𝑎𝑎

  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

2)� �⃗�𝑎 ≡

 

�ɳ� �⃗�𝑎               
         

                    

(9)

 

�𝑈𝑈
��⃗

 

(1)
𝑈𝑈��⃗

 

(2)
�

(𝑛𝑛)

=

 

𝑈𝑈��⃗ (e)

 

=  �
1 sin(−𝜋𝜋

2
)

1 sin(𝜋𝜋
2

)
� �
𝑎𝑎1
𝑎𝑎2
� =

  

�1 −1
1

 

  

1� �
𝑎𝑎1
𝑎𝑎2
� ≡

 

�ɳ� �⃗�𝑎
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Where 𝑈𝑈��⃗ (e) is the vector of nodal values of the 
field variable corresponding to element e, and the 

square matrix  �ɳ� can be identified from Eq. (9). By 
inverting Eq. (9), we obtain

C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
Dimensional Elements



 

 
 

                             �⃗�𝑎 =

 

�ɳ�
−1
𝑈𝑈��⃗ (e)                      

 

(10)

 

Substituting the Eq. (10) Into Eq. (7) gives

 

         𝑈𝑈��⃗ =

 

ɳ�⃗ 𝑇𝑇�⃗�𝑎 =

 

ɳ�⃗ 𝑇𝑇 �ɳ�
−1
𝑈𝑈��⃗ (e)

 

= [𝑁𝑁]𝑈𝑈��⃗ (e)                  (11)

 
                   Thus [𝑁𝑁] =

 

ɳ�⃗ 𝑇𝑇 �ɳ�
−1

         

 

            

 

(12)

 
Where,

 

[𝑁𝑁]is the matrix of interpolation functions 
or shape functions.

 

Equation (11) expresses the  interpolating  
function  inside  any  finite  element  in terms  of the  
nodal  unknowns  of that  element,  𝑈𝑈��⃗ (e). A  major  
limitation  of trigonometric interpolation  functions  is  

that  one  has  to  invert  the  matrix  �ɳ�  to  find  𝑈𝑈��⃗ ,  and  

�ɳ�
−1

  may become  singular  in  some  cases.

 
a)

 

Two Nodded Bar Element With Trigonometric Shape 
Functions

 

There are two unknowns for two nodded bar 
element, therefore there must be only two shape 

functions N1 and N2

 
which are derived by

 
following the 

foregoing procedure. The shape functions are given as
 

  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑁𝑁1 =

sin �𝝅𝝅𝟐𝟐�− sin�𝝅𝝅𝟐𝟐 𝑇𝑇�

sin �𝝅𝝅𝟐𝟐�− sin �−𝝅𝝅𝟐𝟐�

𝑁𝑁2 =
sin �𝝅𝝅𝟐𝟐 𝑇𝑇� − sin �−𝝅𝝅𝟐𝟐�

sin �𝝅𝝅𝟐𝟐�− sin �−𝝅𝝅𝟐𝟐�

�
                                    

Therefore, the shape functions are 

                           �
𝑁𝑁1 =

1− sin �𝝅𝝅𝟐𝟐𝑇𝑇�

2

𝑁𝑁2 =
sin �𝝅𝝅𝟐𝟐𝑇𝑇�+1

2

�                                     

It must be noted that
 
−1

 
≤ 𝑇𝑇

 
≤ 1.

  

The variation of the resulting shape functions 
are shown in Fig. 4. The essential properties of shape 
functions are that they must be unity at one node and 
zero at the other nodes. It can be seen that by shifting 
the T

 
to T1 and T2 we get

  

�
𝐴𝐴𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 1 𝑤𝑤ℎ𝑛𝑛𝑒𝑒𝑛𝑛 𝑇𝑇 =  𝑇𝑇1 =  −1
𝑁𝑁1 = 1 

                                                 

𝑁𝑁2 = 0 

                                                  

� �
𝐴𝐴𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 2 𝑤𝑤ℎ𝑛𝑛𝑒𝑒𝑛𝑛 𝑇𝑇 =  𝑇𝑇2 =  1

𝑁𝑁1 = 0 
                                                 𝑁𝑁2 = 1 

                                                  

� 

 

Figure 4 : Variation of shape functions for two nodded bar element 

To have the C0

 

continuity element the sum of 
the shape functions must be 1(

 

𝑖𝑖. 𝑛𝑛.∑𝑁𝑁𝑖𝑖 = 1) and the 
first derivative of the field variable must be 

zero

 

(

 

𝑖𝑖. 𝑛𝑛.∑ 𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕𝑇𝑇

= 0). As there are two nodal unknowns 

U1 and U2 for node 1 and node 2 respectively, therefore 
in the natural coordinate system it can be written as 

 

                 
       

 

𝑈𝑈 = 𝑁𝑁1𝑈𝑈��⃗ 1
𝑛𝑛 +𝑁𝑁2𝑈𝑈��⃗ 2

𝑛𝑛

 

(15)

 

�
𝑁𝑁1 + 𝑁𝑁2 = 1

1− sin�𝝅𝝅𝟐𝟐 𝑇𝑇�
2 +

sin �𝝅𝝅𝟐𝟐 𝑇𝑇�+ 1
2 = 1

�
 

And 

 

⎩
⎪
⎨

⎪
⎧ 𝜕𝜕𝑁𝑁𝑖𝑖

𝜕𝜕𝑇𝑇 =
 𝜕𝜕𝑁𝑁1

𝜕𝜕𝑇𝑇 +
𝜕𝜕𝑁𝑁2

𝜕𝜕𝑇𝑇 = 0
 

𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕𝑇𝑇 =

 −𝝅𝝅𝟐𝟐 cos(
 
𝝅𝝅
𝟐𝟐 𝑇𝑇)

2 +
𝝅𝝅
𝟐𝟐 cos(

 
𝝅𝝅
𝟐𝟐 𝑇𝑇)

2 = 0
 �
 

© 2014  Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)

V
ol
um

e 
 X

IV
  

Is
su

e 
 I
  

V
er
si
on

 I
  

  
  
 

  
Y
e
a
r

20
14

30

E

  (13)

  (14)

C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
Dimensional Elements



It can be seen that the two essential 
requirements of the C0

 
continuity element are satisfied.

 

It is of interest to mention that there is clear 
difference between the interpolation model of the 
element 𝑈𝑈��⃗ (T)

 
=ɳ�⃗ �⃗�𝑎

 
that applies  to the  entire  element  

and  expresses  the  variation  of  the  field  variable  
inside  the  element in terms  of the generalized 
coordinates ai

 
and the shape  function  Ni

 
that  

corresponds  to  the  ith  nodal  degree of  freedom  
𝑈𝑈��⃗ 𝑖𝑖𝑛𝑛and  only  the  sum ∑𝑁𝑁𝑖𝑖𝑈𝑈��⃗ 𝑖𝑖𝑛𝑛

 
represents  the  variation  

of  the  field  variable  inside the  element  in  terms  of  
the  nodal  degrees  of  freedom 𝑈𝑈��⃗ 𝑖𝑖𝑛𝑛 . In fact,  the  shape  
function corresponding  to  the  ith 

 

nodal  degree  of  
freedom  Ni

 

assumes  a  value  of  1  at  node  i  and  0  
at  all the  other  nodes  of  the  element[20].

 

b)

 

Mapping of the element in global coordinate system

 

The mapping of the parent element in global 
coordinate system can be done by using eq.

 

(2) which 
can be written in matrix form as

 

                        

{𝑿𝑿} = [𝑁𝑁1

  

𝑁𝑁2]�
𝑥𝑥1
𝑥𝑥2
�

                                        

(16)

 
The trigonometric shape functions in Eq. (14) 

map the T
 
coordinate of any point in the element to the 

X
 
coordinate. It is clear that by substituting T=

 
-1

 
and 

T=𝟏𝟏, we obtain
 
X=x1

 
and X=x2

 
respectively.

 c)
 

Strain –
 
displacement and stress -

 
strain relationship

 To formulate the element strain matrix [B] to 
evaluate the element stiffness matrix [K] the 
isoprametric formulation is used. The strain is defined in 
terms of the natural coordinate system T

 
varying inside 

the element from the center of the element to -1 or 1. To 
determine the strain which is the first derivative of the 
displacement with respect to X the chain rule of the 
differentiation must be used.

 
This is given as

                                                    
𝑛𝑛𝑑𝑑

  

𝑛𝑛𝑇𝑇
= 𝑛𝑛𝑑𝑑

𝑛𝑛𝑥𝑥
𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

          

𝑤𝑤ℎ𝑛𝑛𝑒𝑒𝑛𝑛

 

𝑋𝑋 = 𝑋𝑋𝑐𝑐 + 𝐿𝐿
2

sin(𝜋𝜋
2
𝑇𝑇)

                                                                                

Therefore

 

𝑛𝑛𝑑𝑑
𝑛𝑛𝑥𝑥 =

𝑛𝑛𝑑𝑑
𝑛𝑛𝑇𝑇
𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

 It is clear that 𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇

= [

 

−𝜋𝜋
2 cos �𝜋𝜋2

 

𝑇𝑇�

2

  

𝜋𝜋
2 cos �𝜋𝜋2𝑇𝑇�

2
] �𝑈𝑈1
𝑈𝑈2
�

 

and

 

𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

= 𝐿𝐿
2

 

𝜋𝜋
2

cos(𝜋𝜋
2
𝑇𝑇)

 

, therefore the Eq. (17) becomes

 
                                                                        𝜖𝜖 = 𝑛𝑛𝑑𝑑

𝑛𝑛𝑥𝑥
= 1

𝐿𝐿
[−1

   

1] �𝑈𝑈1
𝑈𝑈2
�

(𝑛𝑛)
                                                                

  
Strain displacement relation is given as [3]

 
                             𝜖𝜖 = ∑𝐵𝐵𝑖𝑖𝑛𝑛𝑈𝑈��⃗ 𝑖𝑖𝑛𝑛                                    (19)

 
Or in matrix form as

 

{𝜖𝜖} = [𝐵𝐵𝑖𝑖]𝑛𝑛{𝑈𝑈𝑖𝑖}𝑛𝑛                             (20)

 
Where, {𝜖𝜖}

 

is strain at any point in the element, 
{𝑈𝑈𝑖𝑖}𝑛𝑛 is displacement vector of nodal values of the 
element and [𝐵𝐵𝑖𝑖]𝑛𝑛 is strain displacement matrix.

 

By comparing the Eq. (20) with expression 
given for the strain in Eq. (18) we have the strain 
displacement matrix of the bar as

 
                             [𝐵𝐵] = 1

𝐿𝐿
[−1

    

1]

                             
The essential necessity of liner interpolation 

functions is that the strain must be constant inside the 
element for with C0-

 

continuity. As it can be seen in Eq. 
(21) the strain is constant and is same as the stain 
matrix for bar element using the polynomial functions. 

 
 

   
              

 

{𝜎𝜎} = [𝐷𝐷]{𝜀𝜀}e

 

= [D] [B]{𝑈𝑈𝑖𝑖}𝑛𝑛                      (22)

 

Where, {𝜎𝜎}

 

is the stress,

 

{𝜀𝜀} is the strain and [𝐷𝐷]

 

is the matrix of constants of elasticity.

 

The stiffness matrix can be evaluated by using 
the following equation [16].

 
                         [k]=∭ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝑛𝑛𝑑𝑑𝑣𝑣

0                       (23)

 
The Eq. (23) can be written in the global 

coordinate system as

 
                  

  

  [𝐾𝐾] = ∫ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝐴𝐴𝑛𝑛𝑥𝑥𝐿𝐿
0                        (24)

 
Where A is the cross section area of the bar

 

The eq. (24) is in terms of the global coordinate 
system and must be transformed to the natural 
coordinate system; because matrix [B] is, in general, a 
function of T. This general type of transformation is given 
by References [3, 16, and 21]. This can be done by 
following procedure

 

We know that

 

𝑋𝑋 = 𝑋𝑋𝑐𝑐 + 𝐿𝐿
2

sin(𝜋𝜋
2
𝑇𝑇), hence it can 

be written that  
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E

The stress strain relation is given by constitutive 

(21)

𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

=
𝐿𝐿
2
𝜋𝜋
2

cos(
𝜋𝜋
2 𝑇𝑇) 𝑎𝑎ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛

𝐿𝐿
2
𝜋𝜋
2

cos(
𝜋𝜋
2 𝑇𝑇) 𝑛𝑛𝑇𝑇 = 𝑛𝑛𝑥𝑥 (25)

C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
Dimensional Elements



                                                                           By inserting Eq. (25) in Eq. (24), we can write the stiffness matrix in global coordinate system as

                                                                [k]=∫ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝐴𝐴

 

𝐿𝐿
2
𝜋𝜋
2

cos(𝜋𝜋
2
𝑇𝑇)

 

𝑛𝑛𝑇𝑇𝐿𝐿
0                                                           (26)

 Or

                                                       

 

               [k]=∫ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝐴𝐴│𝐽𝐽│𝑛𝑛𝑇𝑇

           

𝐿𝐿
0                                                        (27)

 Where,│𝐽𝐽│ = 𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

= 𝜋𝜋
2
𝐿𝐿
2

cos �𝜋𝜋
2
𝑇𝑇�

 

is the Jacobian 
determinant for one dimensional element with 
trigonometric displacement functions and relates an 
element length in the global coordinate system to an 
element length in the natural coordinate system. This is 
different from the Jacobian determinant for one 
dimensional element with polynomial displacement 
function given by 𝐿𝐿

2

 

but the concept is same.

 

By inserting the modulus of elasticity E= [D], 
Eq. (27) becomes

             [k]=∫ [𝐵𝐵]𝑇𝑇

 

𝐸𝐸

 

[𝐵𝐵]𝐴𝐴

 

𝐿𝐿
2
𝜋𝜋
2

cos(𝜋𝜋
2
𝑇𝑇)

 

𝑛𝑛𝑇𝑇𝐿𝐿
0                  (28)

 By substituting the strain displacement matrix 
given in Eq. (21), the stiffness matrix can be evaluated 
as

 

[𝐾𝐾] = �
𝐸𝐸𝐴𝐴
𝐿𝐿2 �

−1
1 � [−1

      

1]
𝐿𝐿
2
𝜋𝜋
2

cos(
𝜋𝜋
2
𝑇𝑇)𝑛𝑛𝑇𝑇 =

𝐸𝐸𝐴𝐴𝜋𝜋
4𝐿𝐿

� �−1
1 � [−1

      

1] cos(
𝜋𝜋
2
𝑇𝑇) 𝑛𝑛𝑇𝑇

 

1

−1
 

1

−1
 

Upon integrating we get the stiffness matrix as

 

                                                                               

[𝐾𝐾] =
𝐸𝐸𝐴𝐴
𝐿𝐿
� 1 −1
−1 1 �

                                                                                             

 

It can be realized that the stiffness matrix is the 
same as that of given for the two nodded bar element 
evaluated employing the polynomial functions.

 
d)

 

Derivation of the system equations in terms of the 
natural coordinate system

 
The body and surface forces in terms of the 

natural coordinate system can be evaluated by the 
following formulas 

 

           

{𝐹𝐹}𝑛𝑛 = �[𝑁𝑁]𝑇𝑇[𝑋𝑋𝑏𝑏]𝑛𝑛𝑑𝑑 −
𝑑𝑑

�[𝑁𝑁]𝑇𝑇[𝑇𝑇𝑥𝑥 ]𝑛𝑛𝑑𝑑
𝑑𝑑             

Where, {𝐹𝐹}𝑛𝑛 is the consistent load vector, Xb

 

is 
the body force and Tx

 

is the surface force or the traction 
force. Eq. (30), is in terms of the global coordinate 
system and by using the Jacobian determinant can be 
written in terms of natural coordinate system.  For 
example for a bar having constant cross section it can 
be written as

 

  
{𝐹𝐹}𝑛𝑛 = �[𝑁𝑁]𝑇𝑇[𝑋𝑋𝑏𝑏]𝐴𝐴𝑛𝑛𝑥𝑥 −

𝑑𝑑

�[𝑁𝑁]𝑇𝑇[𝑇𝑇𝑥𝑥 ]𝑛𝑛𝑥𝑥
𝑑𝑑               

            

                                  {𝐹𝐹}𝑛𝑛 = ∭ [𝑁𝑁]𝑇𝑇[𝑋𝑋𝑏𝑏]𝐴𝐴

 

𝐿𝐿𝜋𝜋
4

cos(𝜋𝜋
2
𝑇𝑇)

 

𝑛𝑛𝑇𝑇 −𝑑𝑑 ∬ [𝑁𝑁]𝑇𝑇[𝑇𝑇𝑥𝑥 ]

 

𝐿𝐿𝜋𝜋
4

cos(𝜋𝜋
2
𝑇𝑇)

 

𝑛𝑛𝑇𝑇𝑑𝑑

                                                   Where, the product of A and L represents the 
volume of the element and Xb

 

the body force per unit 
volume, then [𝑋𝑋𝑏𝑏]𝐴𝐴 𝐿𝐿𝜋𝜋

4
cos(𝜋𝜋

2
𝑇𝑇)

 

is the total body force 
acting on the element and 𝑇𝑇𝑥𝑥

 

is traction force-per-unit-
length, [𝑇𝑇𝑥𝑥 ] 𝐿𝐿𝜋𝜋

4
cos(𝜋𝜋

2
𝑇𝑇)

 

is now the total traction force.

 The element equilibrium equation is

 

                                    
[𝐾𝐾]{𝑈𝑈}𝑛𝑛 = {𝐹𝐹}𝑛𝑛                              (33)

 The above equation of equilibrium is to be 
assembled for entire structure and

 
boundary conditions 

are to be introduced. Then the solutions of equilibrium 
equations result into nodal displacements of all the 
nodal points. Once these basic unknowns are found, 
then displacement at any point may be obtained by Eq. 
(11), the strains may

 

be assembled using the Eq. (12) 
and then stresses also can be found using the Eq. (22).

 

e)

 

Shifting the domain from −1

 

≤𝑇𝑇

 

≤ 1  to 0

 

≤ 𝑇𝑇

 

≤ 1

  

To shift the domain of the trigonometric function 
successfully from −1

 

≤ 𝑇𝑇

 

≤ 1   to 0

 

≤ 𝑇𝑇

 

≤ 1

 

we 
consider a special case when the global coordinate 
system X

 

and natural coordinate system T coincide and 
the centre of the circle shown in Fig.2 becomes the 
origin of the natural coordinate system T. It means that 
we consider only half of the element length shown in 
Fig.1. Therefore, the coordinates X and T can be related 
by 

 

                               𝑋𝑋 = 𝐿𝐿 sin(𝜋𝜋
2
𝑇𝑇)                            (34)
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(29)

(30)

(31)

By using the Eq. (25) in the natural coordinate 
system it can be written as

(32)

The shape functions are given as

                  �
𝑁𝑁1 = 1 − sin �𝜋𝜋

2
𝑇𝑇�

𝑁𝑁2 = sin �𝜋𝜋
2
𝑇𝑇�

� (35)

C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
Dimensional Elements



 

  
 

                                      
 

The variation of the resulting shape functions

 

are shown in Fig. 5.

 

 

Figure

 

5

 

:

 

Variation of shape functions for bar element in 
natural and global coordinate system

 

To relate the natural coordinate T

 

(where,

 

0

 

≤ 𝑇𝑇

 

≤ 1) and global coordinate X

 

(where, 0

 

≤ 𝑥𝑥

 

≤ 1)

 

the 
Jacobian determinant given in Eq. (25) becomes

 

                                                      𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

= 𝐿𝐿𝜋𝜋
2

cos(𝜋𝜋
2
𝑇𝑇)

      

𝑎𝑎ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒

       

𝐿𝐿𝜋𝜋
2

cos(𝜋𝜋
2
𝑇𝑇)

 

𝑛𝑛𝑇𝑇 = 𝑛𝑛𝑥𝑥

                                               The strain displacement matrix  [B]  will be same as given in Eq. (21)  and the stiffness matrix  [K]  same as
Eq. (29). The consistent forces will be as

 

                                                      

{𝐹𝐹}𝑛𝑛 = ∭ [𝑁𝑁]𝑇𝑇[𝑋𝑋𝑏𝑏]𝐴𝐴 𝐿𝐿𝜋𝜋
2

cos(𝜋𝜋
2
𝑇𝑇)

 

𝑛𝑛𝑇𝑇 −𝑑𝑑 ∬ [𝑁𝑁]𝑇𝑇[𝑇𝑇𝑥𝑥 ]

 

𝐿𝐿𝜋𝜋
2

cos(𝐿𝐿𝜋𝜋
2

)

 

𝑛𝑛𝑇𝑇𝑑𝑑                               (37)

It must be noted that the limits of the integrations will be 0 to 1.

 
IV. Interpolation Model and Shape 

Functions for Three Nodded 
Element 

To illustrate the concept of three nodded 
elements using the trigonometric functions, the element 
with three coordinates of nodes, x1, x2, and x3, in the 
global coordinates is shown in Fig. 6. Again the element 
is considered within a circle of unit radius and the third 
node is selected at the centre of the circle.     

 Figure 6
 
:
 
Three nodded bar element in global 

coordinate system X

The interpolation model of the field variable (displacement model inside the element) in terms of nodal 
degrees of freedom is given by trigonometric function as 

𝑈𝑈(𝑇𝑇) = 𝑎𝑎1 + 𝑎𝑎2 sin �𝜋𝜋
2
𝑇𝑇� + 𝑎𝑎3(sin (𝜋𝜋

2
T))2                        Where            �

T =  −1          𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛
T =  1              𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑤𝑤𝑛𝑛

 T =  0            𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎ℎ𝑒𝑒𝑛𝑛𝑛𝑛
�                (38) 

Using the displacement field given in Eq. (38), the shape functions are given as 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑁𝑁1 =

(sin (𝜋𝜋2 T))2 − 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋2 𝑇𝑇)
2

𝑁𝑁2 =
(sin (𝜋𝜋2 T))2 + 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋2 𝑇𝑇)

2
𝑁𝑁3 = 1− (sin (

𝜋𝜋
2 T))2

�
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C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
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The variation of the resulting shape functions are shown in Fig. 7. The essential properties of shape 
functions are also satisfied as following

 

�

𝐴𝐴𝑎𝑎

 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

1

 

𝑤𝑤ℎ𝑛𝑛𝑒𝑒𝑛𝑛

 

𝑇𝑇 =

 

𝑇𝑇1 =

 

−1  

𝑁𝑁1 = 1

  
           

𝑁𝑁2 = 0

           

𝑁𝑁3 = 0

� �

𝐴𝐴𝑎𝑎

 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

2

 

𝑤𝑤ℎ𝑛𝑛𝑒𝑒𝑛𝑛

 

𝑇𝑇 =

 

𝑇𝑇2 =

 

1
𝑁𝑁1 = 0
𝑁𝑁2 = 1
𝑁𝑁3 = 0

� �

𝐴𝐴𝑎𝑎

 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

3

 

𝑤𝑤ℎ𝑛𝑛𝑒𝑒𝑛𝑛

 

𝑇𝑇 =

 

𝑇𝑇3 = 0
𝑁𝑁1 = 0
𝑁𝑁2 = 0

 

𝑁𝑁3 = 1

  �
 

 

Figure
 
7
 
:
 
Variation of shape functions for three nodded bar element

 

To have the C0

 

continuity for three nodded bar 

element here again ∑𝑁𝑁𝑖𝑖 = 1

 

and

 

∑𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕𝑇𝑇

= 0. As there are 

three nodal unknowns U1, U2 and

 

U3

 

for node 1, 2 and 

node 3 respectively, therefore in the natural coordinate 
system it can be written as 

 

              

𝑈𝑈 = 𝑁𝑁1𝑈𝑈��⃗ 1
𝑛𝑛 +𝑁𝑁2𝑈𝑈��⃗ 2

𝑛𝑛 + +𝑁𝑁3𝑈𝑈��⃗ 3
𝑛𝑛

 

                          

(40)

⎩
⎨

⎧
𝑁𝑁1 + 𝑁𝑁2 +𝑁𝑁3 = 1

   

(sin (𝜋𝜋2 T))2 − 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋2 𝑇𝑇)
2 +

(sin (𝜋𝜋2 T))2 + 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋2 𝑇𝑇)
2 + 1 − (sin (

𝜋𝜋
2 T))2 = 1

�

 

And 

 

⎩
⎪
⎨

⎪
⎧ 𝜕𝜕𝑁𝑁𝑖𝑖

𝜕𝜕𝑇𝑇 =

 

𝜕𝜕𝑁𝑁1

𝜕𝜕𝑇𝑇 +
𝜕𝜕𝑁𝑁2

𝜕𝜕𝑇𝑇 +
𝜕𝜕𝑁𝑁3

𝜕𝜕𝑇𝑇 = 0

 
   

𝜕𝜕𝑁𝑁𝑖𝑖
𝜕𝜕𝑇𝑇 =

𝜋𝜋
2 𝑐𝑐𝑛𝑛𝑠𝑠

�
𝜋𝜋
2 𝑇𝑇

� 𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� −
𝜋𝜋
4 𝑐𝑐𝑛𝑛𝑠𝑠

�
𝜋𝜋
2 𝑇𝑇

�+
𝜋𝜋
2 𝑐𝑐𝑛𝑛𝑠𝑠

�
𝜋𝜋
2 𝑇𝑇

� 𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

�+
𝜋𝜋
4 𝑐𝑐𝑛𝑛𝑠𝑠

�
𝜋𝜋
2 𝑇𝑇

� − 𝜋𝜋𝑐𝑐𝑛𝑛𝑠𝑠 �
𝜋𝜋
2 𝑇𝑇

� 𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� = 0

 

�

 

It can be seen that the two essential requirements of the C0

 

continuity element are satisfied.

 

a)

 

Strain –

 

displacement and stress -

 

strain relationship

 

From our basic definition of axial strain we have

 

{𝜖𝜖} =
𝑛𝑛𝑑𝑑
𝑛𝑛𝑥𝑥 =

𝑛𝑛𝑑𝑑
𝑛𝑛𝑇𝑇
𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

= [𝐵𝐵] �
𝑈𝑈1
𝑈𝑈2
𝑈𝑈3

�

(𝑛𝑛)

                    

It has previously proven that

 

𝑛𝑛𝑥𝑥
𝑛𝑛𝑇𝑇

= 𝐿𝐿𝜋𝜋
4

cos(𝜋𝜋
2
𝑇𝑇) , 

this relationship holds for the three nodded one-
dimensional elements as well as for the two-nodded 

constant strain bar element. Using this relationship and 
𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇

 in Eq. (41), we obtain 
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𝑛𝑛𝑑𝑑
𝑛𝑛𝑥𝑥 = �

4

𝐿𝐿𝜋𝜋𝑐𝑐𝑛𝑛𝑠𝑠 �𝜋𝜋2 𝑇𝑇�

 
��
𝜋𝜋
2
𝑐𝑐𝑛𝑛𝑠𝑠 �

𝜋𝜋
2 𝑇𝑇

� 𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� −
𝜋𝜋
4 𝑐𝑐𝑛𝑛𝑠𝑠

�
𝜋𝜋
2 𝑇𝑇

�,
      𝜋𝜋

2
𝑐𝑐𝑛𝑛𝑠𝑠 �

𝜋𝜋
2 𝑇𝑇

� 𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� +
𝜋𝜋
4 𝑐𝑐𝑛𝑛𝑠𝑠

�
𝜋𝜋
2 𝑇𝑇

� ,

−𝜋𝜋𝑐𝑐𝑛𝑛𝑠𝑠 �
𝜋𝜋
2
𝑇𝑇� 𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2 𝑇𝑇

���� �
𝑈𝑈1
𝑈𝑈2
𝑈𝑈3

�

(𝑛𝑛)
 

Therefore 

𝑛𝑛𝑑𝑑
𝑛𝑛𝑥𝑥

=
1
𝐿𝐿 
�2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2 𝑇𝑇

� − 1,
      

2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2
𝑇𝑇� + 1, −4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�� �

𝑈𝑈1
𝑈𝑈2
𝑈𝑈3

�

(𝑛𝑛)

        

By comparing the expression given for the strain in Eq. (41) with Eq. (19), the strain-displacement matrix [B] 
for the three nodded bar is

 

[𝐵𝐵] =
1
𝐿𝐿  �2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2 𝑇𝑇

� − 1,      2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� + 1, −4𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

��        

Substituting the expression for [B] into Eq. (27), the stiffness matrix is obtained as 

[𝐾𝐾] = �
𝐸𝐸𝐴𝐴
𝐿𝐿2

⎣
⎢
⎢
⎢
⎢
⎡2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇� − 1

2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

�+ 1

−4𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� ⎦
⎥
⎥
⎥
⎥
⎤

�2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2
𝑇𝑇� − 1,      2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�+ 1, −4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇��

𝐿𝐿𝜋𝜋
4

cos(
𝜋𝜋
2 𝑇𝑇)𝑛𝑛𝑇𝑇 

1

−1
 

=
𝐸𝐸𝐴𝐴
𝐿𝐿

�

⎣
⎢
⎢
⎢
⎢
⎡2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇� − 1

2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� + 1

−4𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

� ⎦
⎥
⎥
⎥
⎥
⎤

�2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2
𝑇𝑇� − 1,      2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇� + 1, −4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇��

𝜋𝜋
4

cos(
𝜋𝜋
2 𝑇𝑇)𝑛𝑛𝑇𝑇 

1

−1

 

=
𝐸𝐸𝐴𝐴
𝐿𝐿

�

⎣
⎢
⎢
⎢
⎢
⎡ (2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇� − 1)2 (2𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�)2 − 1 −8(𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�)2 + 4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�

(2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

�)2 − 1 (2𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2
𝑇𝑇�+ 1)2 −8(𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�)2 − 4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�

−8(𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2 𝑇𝑇

�)2 + 4𝑠𝑠𝑖𝑖𝑛𝑛 �
𝜋𝜋
2
𝑇𝑇� −8(𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�)2 − 4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇� (4𝑠𝑠𝑖𝑖𝑛𝑛 �

𝜋𝜋
2
𝑇𝑇�)2

⎦
⎥
⎥
⎥
⎥
⎤
𝜋𝜋
4

cos(
𝜋𝜋
2 𝑇𝑇)𝑛𝑛𝑇𝑇 

1

−1

 

Integrating the matrix the stiffness matrix for three nodded bar element becomes
 

[𝐾𝐾] =
𝐸𝐸𝐴𝐴
𝐿𝐿
�

2.333333 0.333333 −2.666667
0.333333 2.333333 −2.666667
−2.666667 −2.666667 5.333333

�
                   

The stiffness matrix given in Eq. (27) is the 
same as that of given for the three nodded bar elements 
evaluated using polynomial functions.

 

Example 1.

 

Analysis of bar of uniform cross section (A), 
Young’s modulus of the material (E) due to self-weight 
(unit weight,ρ) when held as shown in Fig. 8. Self-weight 
acting in T direction.

 

 

 

 

 

 

   

By substituting the �𝐹𝐹1
𝐹𝐹2
�

(𝑛𝑛)
= ρAL

2
�11�

(𝑛𝑛)

 

obtained 

from Eq. (32), and boundary values of � 0
𝑈𝑈2
�

(𝑛𝑛)
in Eq. (33), 

the extension of the bar evaluated is. 
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(42)

(43)

(44')

𝑈𝑈2 =
ρL2

2𝐸𝐸

The Eq. (44) is the exact solution [22]. The 
strain may be evaluated using the Eq. (18) and stress 
also is found using the Eq. (22) as

(45')

Figure  8 : Bar of constant cross section

C0- Continuity Isoparametric Formulation using Trigonometric Displacement Functions for O   ne 
Dimensional Elements



                                                                            

 

                                     

 

𝜀𝜀 = ρL
2𝐸𝐸

                                      

                                   

𝜎𝜎 =
ρL
2

                                        

Equations (45) and (46) are the exact solutions 
for a bar having constant cross –section due to its own 
self weight.

 

Figure 9 : Displacement of bar due to its self weigh 
using 2 and 3 nodded element with −1 ≤ 𝑇𝑇 ≤ 1 

 
Figure 10 : Stress in the bar due to its self weigh using 2 and 3nodded element with −1 ≤ 𝑇𝑇 ≤ 1 

 
V.

 
Conclusion

 
Using the trigonometric interpolation model, 

new family of C0-
 
continuity elements are introduced. To 

obtain the constant stress and strain state in 2 nodded 
elements, trigonometric function is used instead of the 
polynomial Jacobian determinant to relate the natural 
and global coordinate system. The bar of uniform cross 
section is analyzed and results are compared with those 
of obtained using the polynomial

 
functions.
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