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Abstract6

Discrete structural models, as a basis for evolving a new design methodology, created the need7

for considering structural configuration as a variable. Existing energy methods and variational8

principles do not provide analysis link between pairs of structural configurations, whereas9

Principle of Quasi Work addresses this need. This is proved for discrete structural models by10

adapting Tellegen?s theorem used in topologically similar electrical networks. Several forms of11

the basic theorem and derivatives of Principle of Quasi Work are deduced. Its import on12

structural analysis is examined. Illustrative example of nonlinear structural system is13

included. Examples of linear and nonlinear structural systems are included.14
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2 Introduction20

iscrete structural element models characterizing stiffness, inertia and damping properties of structural elements21
forming the lower end of the spectrum of finite elements in evolving a new methodology termed as Model Based22
Design, MBD, was given by Prasad [1]. This method utilizes structural models as an assemblage of appropriately23
interconnected discrete elements or modules (comprising of such elements). The striking similarity between24
such discrete structural models and electrical networks led to the adaptation of concept of Topologically Similar25
Systems (TSS) in the realm of structural analysis by Pandita [2], Panditta, Ambardhar, et al [3], Panditta and26
Wani [4], Panditta, Shimpi, et al [5], Panditta [6] and Panditta [7].27

However, during a search for the analytical methods suitable for providing an analysis link between a pair of28
TSS, a glaring inadequacy of the existing energy methods and variational principles is noticed. Exploitation of29
topological similarity for analysis is beyond the scope of existing energy methods (Argyris and Ashley [8] and30
Shames [9]), variational principles (Reissener [10,11]) and finite element methods (Cook, Malkus et al ??12] and31
Akin [13]); since these principles/ methods can be applied only to one structural configuration at a time.32

In this paper, general form of Principle of Quasi Work (PQW) and its derivatives based on Tellegen’s theorem33
for electrical network analysis (Penfield, Spencer, et al [14]) governing a pair of TSS are derived and illustrated.34

3 II.35

4 Basic Theorem36

Equation for nodal equilibrium in direction ’j’ of a discrete model of any structural system can be written as:1 037
j b i j i F P = + = ? (1)38

alter the right hand side of this equation (even if the resulting product may not have any physical significance).39
Hence, multiplying Eqn. (1) by any parameter S (distributed over the nodes) and taking the sum over all ’N’40

DOF of the system, one obtains:1 1 ( ) 0 j b N i j j j j i F S P S = = + = ? ?(2)41
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8 TOPOLOGICALLY SIMILAR SYSTEMS

First term of the left hand side of Eqn. (2) takes the sum of the product over each branch twice (once on42
each node to which these branches are connected). This is equivalent to taking the sum of the product of the43
difference of S between terminal nodes of each branch (represented as ?S) and the force due to this branch at one44
of the nodes. Hence, this double sum can be replaced by a single sum taken over all branches. Thus Eqn. (2)45
takes the formB k k k=1 1 F ( S ) 0 N j j j P S = ? ? = ? ?(3)46

Where,1 2 N j j b B = = ? .47
Here, ’B’ represents, in general, the total branch DOF of the structural system, ?S k is a branch parameter48

defined as the difference between the parameter values associated with the pair of the generalized directions49
corresponding to the k th branch DOF and ’N’ is the total number of DOF of the system.50

The negative sign in Eqn. ( 3) is a consequence of the definition of F k and ?S k together with the associated51
sign relevant to the self equilibrating force system in k th branch or more generally the k th branch DOF (in the52
sense that there can be more than one self equilibrating system of forces concurrently in the branch corresponding53
to tension, torsion, etc.).54

Taking advantage of arbitrary nature of parameter S j it will be prudent to define these S j ’s as nodal55
parameters of another conveniently chosen TSS which could be distinctly different from the given structural56
system. Equation (3) can then be deduced to provide the mathematical statement of the basic theorem as:1 1 (57
) ( ) ( ) ( ) B N k m k n j m j n k j F S P S = = ? = ? ?(4)58

Where, the subscripts ’m’ and ’n’ refer to two distinct structural systems with topological similarity as their59
connecting link. This can also be stated as: Sum of the product of internal branch forces of a system with the60
corresponding branch nodal parameter differences of another topologically similar system is equal to the sum of61
the product of external (self equilibrating) nodal forces of the system with corresponding nodal parameters of62
the topologically similar system.63

Here, it may be relevant to mention that if nodal parameter ’S j ’ is nodal displacement then the product has64
units of work/ energy and if it represents rate of nodal deformation then the product has units of power and so65
on.66

Equation ( 4) can be written in matrix notation as:{ } { } { } { } 0 T T m n m n F S P S ? ? =(5)67
or0 mn mn mn ? ? ? = ? =(6)68
Where, ? mn represents the first term and ? mn second term in the left hand side of the Eqn. (5).69
Even though, Eqn.( 4), Eqn.( 5), and Eqn.( 6) are derived for systems where one deals with discrete set of70

finite nodes and branches, this theorem is equally applicable to continuous structures. Since continuum can be71
treated as consisting of infinite DOF and the above equations can be used for continuum by replacing vectors by72
functions and the vector products by integrals (over the appropriate domain) which represent the two terms in73
Eqn. (5). Each of the distribution functions can also be approximated by appropriate number of interpolation74
functions (i.e. generalised coordinates) and the resulting integrals of Eqn.( 5) can also be represented by matrix75
products (e.g. as in FEM formulations). In fact, this equation is very wide in its scope and it can be applied to76
various fields of science. It only assumes the state of (static or dynamic) equilibrium for its applicability.77

Let Ð?” and ? be two linear operators which when operated upon forces F and generalized parameters S of78
Eqn. (5), result in the most general form of the theorem:{ } { ( )} { } { } T T F S P S Î?” ? ? = Î?” ?(7)79

Above equation holds good for any type of element, loading/ excitation and boundary/ initial conditions.80
These operators when operated upon F and S should not change basic characteristics of F and S. These operators81
can be given a broader meaning which allows these operators to represent TSS also. For Interchanging the role82
of operators in Eqn. (7) we get:{ } { ( )} { } { } T T F S P S ? ? Î?” = ? Î?”(8)83

III.84

5 General form of basic Theorem85

A linear combination of Eqns. ( 7) and ( 8) yields:{ } { ( )} { } { ( )} { } { } { } { } T T T T F S F S P S P S86
? ? Î?” ? ? + ? ? Î?” =Î?” ? + ? Î?” (9)87

Where, ? is any arbitrary constant. This equation is designated as the ’weak form’ of the theorem. It will be88
useful when the theorem has to be applied twice.89

6 b) Variational Form90

Taking suitable variations over Eqn. (6) gives:[ ] 0 mn ? ? =(10)91
Since, force(s) F and parameter(s) S belong to two different systems, it is possible to vary a single parameter92

set of one of the systems at a time without affecting all other parameter sets. This formulation can have two93
variants owing to choice of TSS sequence (m and n). A brief illustration of the concept of TSS adapted to94
Structural mechanics follows.95

7 IV.96

8 Topologically Similar Systems97

To evolve the definition of topologically similar system, one has to go to Eqn. (3). In this equation second98
term is the summation over nodes hence, number of nodes in TSS should be same. First term of the equation is99
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summed over braches hence number of branches should be same. As it also involves the parameter ?S which in100
turn involves two nodes to which a branch is connected hence connectivity of branches should also be same. If101
one assures same interconnectivity of nodes it will in turn ensure that number of branches is same. Hence, for102
two systems to be topologically similar one has to ensure that total number of nodes is same and connectivity of103
branches is also same. Topology can now be defined as unique layout of nodes with specified interconnectivity of104
nodes.105

Systems with same topology are TSS.106
Moreover, in the derivation of this equation the manner in which a branch force is developed is immaterial.107

Hence, systems with same topology (TSS) may differ in other details (e.g. material properties, boundary108
conditions, etc.). Illustrations of pairs of TSS for discrete structural models and continuum structures are109
given in Ref. [3]. For a given problem there are infinite number of TSS, wherein any branch/ element parameter110
can even assume limiting values of zero/ infinity (making such branch/ element on a load path vanish/ rigid) 3111
. Conditions that continuum system should satisfy for being TSS have to be derived in each case. For beams112
and rods/ shafts conditions have been derived in Panditta, Ambardhar, et al. [3] and Panditta and Maruf [4],113
respectively.114

Obtaining equations that can link such systems would be a boon for structural analysis. If one succeeds in115
this crucial step, all advantages of the structural analysis theorems available for the solution of a single system116
can now be extended to an unlimited group of structures which have topological similarity as their link (and the117
only constraint in their choice). Now, the energy principle (PQW) applicable to a pair of topologically similar118
structural systems will be deduced from the basic theorem.119

V.120

9 Principal of Quasi Work121

If generalized parameters (S j ) n in the Basic theorem are replaced by generalized displacements (d j ) n of TSS122
n , the following Principle of Quasi Work results:123

In a pair of TSS, quasi work done by (self equilibrating set of) external forces of any one of the systems while124
going through the corresponding (compatible) displacements of the other system, is equal to quasi energy due to125
internal forces of former system while going through corresponding deformations of the latter system.126

In the mathematical form it can be stated as:mn mn W U =(11)127
In case of continuum systems, quasi energy is computed by utilising stresses of one system and strains of other128

system.129

10 a) Proof130

By replacing {S} n by displacements {d} n and branch parameters {?S} n by branch deformations {?} n ,131
equation ( 5) becomes:{ } { } { } { } T T m n m n P d F ? =(12)132

And, hence, Eqn.( 11) is proved. Panditta, Shimpi, et al. [5] validated PQW and derived useful theorems based133
on PQW for discrete structural models. Panditta, Ambardhar, et al. [3] after validating PQW for beams applied134
it to redundant beams with advantage. Panditta and Maruf [4] applied PQW to one dimensional structural135
elements for getting deflection without resorting to internal force/ moment distributions. Panditta [6] used PQW136
for calculating nodal deflection of trusses with great advantage and Panditta [7] applied PQW to columns for137
obtaining Euler critical load without resorting to the solution of differential equations. In the next section direct138
application of PQW to indeterminate structures is given.139

11 Global140

12 Application of pqw to Indeterminate Structure141

Figure 1a shows a uniformly loaded indeterminate beam built in at both the ends with length L and flexural142
rigidity E 1 I 1 . From symmetry and equilibrium considerations R A = R B = w 1 L/2 and M A = M B . Hence,143
only unknown to be determined is either M A or M B . This given beam is designated as TES 1 . In order to144
apply PQW, a pair of TES is needed. In this example, a simply supported beam with overhang on both the sides145
as given in Fig. 1b is selected as TES 2 . TES are topologically equivalent systems in which E 1 I 1 = E 2 I 2 =146
EI (for beams). Quasi energy U 21 and quasi work W 21 for this pair is given by:2 21 2 1 21 2 1 2 1 2 2 1 (12 ) /147
24 { } { ( / 4)} { } { (3 / 4)} { } { ( )} 0 A C D U M L M w L EI W R v L R v L M v L = ? = + ? + =(13)148

W 21 = 0 as reactions R C = -R D in TSS 2 and in TSS 1 deflections v (L/4) = v (3L/4) due to symmetry149
and v ’ (L) = 0. Applying PQW (i.e. U 12 = W 12 ), one gets MA = MB = wL 2 /12. It can be seen from150
this simple example that PQW connects two distinct structural systems and provides solution for one system151
using the solution of other system. This is not possible through conventional theorems unless the later beam is152
a statically determinate part of the given problem, which is not the case in the present example.153

13 Theorems based on pqw154

Counterpart of some of the well known energy theorems which will be applicable to TSS will now be derived155
from PQW. Pandita [6] has obtained deflection theorem, load theorem (counterparts of Castigliano’s theorems)156
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16 IMPORT ON STRUCTURAL ANALYSIS

and unit load theorem for TSS and has also derived relative displacement theorem and its two corollaries which157
make calculation of nodal deflections of trusses very easy. Relative displacement theorem 6 does not have its158
counterpart in structural analysis. Equivalent forms of some other conventional theorems are given below: a)159
Variational Principles for TSS Variational principles applicable to topologically similar systems can be derived160
by considering variational form of Eqn. (11):( ) 0 mn mn mn U W ? ?? ? = =(14) 1 1161

i.e 0N B mn mn jn jm jn jm j k d P d P ? ? ? ? = = ? ? + = ? ? ? ?(15)162
Where, mn ? is the quasi total potential.163
Making an appropriate choice of variations, either in forces or in displacements, Eqn.( 14) gives rise to:[ ] 0164

mn jn d ? ? = ?(16)165
or [ ] 0mn jm P ? ? = ?(17)166
Unlike in the concept of total potential where one considers only applied loads and ignores reactions due to167

constraints which do no work, in the present context both applied forces and constraint reactions have to be168
considered, since the displacement field of the TSS can contribute to work terms due to reactions.169

Here, the total quasi potential becomes zero which is not the case of the total potential where the condition170
of its stationary value generates the necessary equations.171

In Eqns.( 16) and (17), the term ’virtual’ is conspicuous by its absence as here one deals with real displacements172
and real forces. Since, both forces {P} m and displacements {d} n are independent of each other (as these belong173
to different systems), it is possible to obtain variations with either of these. For the same reason, even the use of174
the term ’complementary energy’ does not find a place in these formulations/ theorems. b) Reciprocal Flexibility175
Theorem for TSS Consider a pair of topologically similar systems TSS m and TSS n with corresponding pair of176
directions i and j specified within each of these systems. Mathematically, this can be stated as:( ) ( ) j m j i m i177
j n j n d f f d =(18)178

i. Proof From the definition of flexibility coefficients f ij with respect to a pair of global generalized directions179
i It may be relevant to state that Eqns.( 16) and (17) in respect of Topologically identical systems (when m=n)180
correspond to the familiar variational principles with the significant difference that ? mn should be replaced by181
the total complementary potential energy. and j for a pair of TSS, the displacements in directions j and i in182
system m and n respectively are given by: ( )jm ji m im d f P = (19) ( ) in ij n jn d f P =(20)183

By dividing these equations and substituting P im =P jn =1, one obtains Eqn.(18) which reduces to Reciprocal184
Theorem (i.e. f ij =f ji ), when the pair of systems is identical.185

14 VIII.186

Application of pqw to Nonlinear Structure187
Application of PQW and its derivative theorems are given Ref. [3][4][5][6][7] for discrete models 5 and linear188

structures. In this section, an example is included to illustrate application of deflection theorem 6 to a typical189
nonlinear structure. a) Illustration: A Typical Nonlinear Structure Equation for mid span deflection of a simply190
supported beam with a nonlinear elastic prop at the centre and subjected to a general case of transverse loading191
(vide Fig. 2a) will now be obtained. Here, nonlinear characteristic of the prop are chosen to be the same as those192
used in Argyris and Kelsey [8] while illustrating the principle of virtual displacement. A typical symmetric load193
distribution as in Fig. 2b is chosen to get expression for mid span deflection as given in Ref. 8, as a special case194
there of.195

For this purpose, a TSS 2 is chosen as in Fig 1c, here, it is termed as TES 2 by taking E 2 I 2 = E 1 I 1 =EI.196
Displacement of TES 2 can be written as: The quasi work W 12 is given by:2 12 1 2 2 2 0 2 2 2 2 2 2 1 2 { ( )}197
{ ( )} { } { ( )} { } [ ( )] L B B W p x P v x dx R P v L P V R v L = + = + ?(22)198

The deflection V at x = L of TES 1 is: 1b, where V 0 is the limiting deformation of the prop) yields the199
following quadratic equation:12 2 2 1 / { } ( ) V W P V f V ? = ? ? = ? (23) Substituting f (V) = V [1+ a / (1200
-V / V 0 )] (vide Fig.2 0 1 0 0 1 0 (1 ) ( / ) [1(1 )201

/ ]( / ) / 0 where, ( ) ( ) andV V a V V V V V V ? ? + ? + + + + = (24) 3 3 2 2 2 2 2 3 2 2 2 3 ( ) (2( ) ( )202
/ / L V p x v x dx v L v L P k ? = = = ? ?203

The value of V 1 can be calculated for any given loading p(x). For the typical symmetrical linear load204
distribution shown in Fig. 1b, we get: P L QL V EI EI = +(25)205

It may be noted that Q = 0 results in an expression for V which is identical to the one given in Ref. [8], page206
10.207

15 IX.208

16 Import on Structural Analysis209

Introduction of this Principle of Quasi Work (PQW), in the realm of structural mechanics heralds a new phase210
of structural analysis and has the following unique features: a) Conventional energy theorems and variational211
principles are special cases of PQW and its derivatives respectively. Hence, this principle has far reaching utility.212
b) It incorporates the advantages of both the force and displacement analysis procedures and unifies these distinct213
procedures.214

c) It dispenses with the concept of ’virtual displacement’, ’virtual force’ and ’complimentary energy’.215
d) It offers simpler procedures for redundant structural analysis.216
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X.217

17 Conclusions218

? A new theorem in its various forms has been derived. Though, this theorem has potential for application219
in several fields, this paper addresses its applications to the field of structural analysis through Principle of220
Quasi Work. ? PQW has the distinction of being able to form a link between any two distinct topologically221
similar structural systems, thereby, offering a wide choice for solving complex structural problems. Such a link,222
for the first time, has paved way for solution of many a problem with the help of the solution of a suitably223
chosen topologically similar problem. This has made it possible to have new procedures for analysis of statically224
indeterminate structures.225

? Conventional energy/ variational principles fall out as a special case of PQW and its derivatives. ? PQW226
dispenses with the concepts of virtual displacements, virtual forces and complementary energy. ? Utility of PQW227
through its various derivatives is demonstrated by its application to nonlinear structures. ? Versatility of PQW228
stands already established by various authors through applications to discrete and linear continuum structures.229
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