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Abstract-

 

Discrete structural models, as a basis for evolving a new design methodology, created 
the need for considering structural configuration as a variable. Existing energy methods and 
variational principles do not provide analysis link between pairs of structural configurations, 
whereas Principle of Quasi

 

Work addresses this need. This is proved for discrete structural 
models by adapting Tellegen’s theorem used in topologically similar electrical networks. Several 
forms of the basic theorem and derivatives of Principle of Quasi Work are deduced. Its import

 

on 
structural analysis is examined. Examples of linear and nonlinear structural systems are included.
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B  = Total branch degrees of freedom 
bj

 
 = Total Degrees Of  Freedom (DOF)  

                  associated with direction j. 
{d}n  =   Nodal displacement in system ‘n’.  

Fi 
 = Internal (branch) force. 

{F}m  
  
 =  Set of internal forces in system ‘m’. 

M#
 

= Support moment reaction at support #. 

m, n  =Subscripts denoting topologically similar           

                  systems ‘m’ and ‘n’.  

N  =Total degrees of freedom. 

Pj  =External (generalized) force. 

{P}m  =Self equilibrating set of external force acting    
 

                 on system ‘m’.
 

R#  =Support reaction at support #.
 

S  =Arbitrary parameter distributed over nodes.
 

Umn  =Quasi Strain Energy (={ } { }T
m nF δ ) 

Wmn =Quasi Work (={ } { }T
m nP d ) 

∆Sk  =Difference
 
of S between terminal nodes of

 

                 branch k.
 

Г,  Λ  =Linear operators. 

α  =A constant. 
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{δ}n  =Set of compatible deformations in system 

 

                  ‘n’.

 

mnπ

 

 =Quasi total potential.

 

I. Introduction

 

iscrete structural element models characterizing 
stiffness, inertia and damping properties of 
structural elements forming the lower end of the 

spectrum of finite elements in evolving a new 
methodology termed as Model Based Design, MBD, 
was given by Prasad [1]. This method utilizes

 

structural 
models as an assemblage of appropriately 
interconnected discrete elements or modules 
(comprising of such elements). The striking similarity 
between such discrete structural models and electrical 
networks led to the adaptation of concept of 
Topologically Similar Systems (TSS) in the realm of 
structural analysis by Pandita

 

[2], Panditta, Ambardhar, 
et al [3], Panditta and Wani [4], Panditta, Shimpi, et al 
[5], Panditta [6] and Panditta [7].  

 

However, during a search for the analytical 
methods suitable for providing an analysis link between 
a pair of TSS, a glaring inadequacy of the existing 
energy methods and variational principles is noticed. 
Exploitation of topological similarity for analysis is 
beyond the scope of existing energy methods (Argyris 
and Ashley [8] and Shames [9]), variational principles 
(Reissener [10,11]) and finite element methods (Cook, 
Malkus et al [12] and Akin [13]); since these

 

principles/ 
methods can be applied only to one structural 
configuration at a time.

 

In this paper, general form of Principle of Quasi 
Work (PQW) and its derivatives based on Tellegen’s 
theorem for electrical network analysis

 

(Penfield, 
Spencer, et al [14])

 

governing a pair of TSS are derived 
and illustrated.

 

II. Basic

 

Theorem

 

Equation for nodal equilibrium in direction ‘j’ of 
a discrete model of any structural system can be written 
as:

 
                               

1

0
jb

i j
i

F P
=

+ =∑

 

       

 

                  (1)
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Nomenclature

Where, Fi is internal (branch) force, Pj is external 
(generalized) force and bj represents total Degrees Of  
Freedom (DOF) associated with direction j.

Multiplication of left hand side of the above 
equation with any non-trivial nodal parameter will not 
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Existing energy methods and variational principles do 
not provide analysis link between pairs of structural 
configurations, whereas Principle of Quasi Work 
addresses this need. This is proved for discrete 
structural models by adapting Tellegen’s theorem used 
in topologically similar electrical networks. Several forms 
of the basic theorem and derivatives of Principle of 
Quasi Work are deduced. Its import on structural 
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alter the right hand side of this equation (even if the 
resulting product may not have any physical 
significance).

 

Hence, multiplying Eqn.

 

(1) by any parameter S 
(distributed over the nodes) and taking the sum over all 
‘N’ DOF of the system, one obtains:

 

                            

 

1 1

( ) 0
jbN

i j j j
j i

F S P S
= =

+ =∑ ∑

 

    (2) 

First term of the left hand side of Eqn. (2) takes 
the sum of the product over each branch twice (once on 
each node to which these branches are connected). 
This is equivalent to taking the sum of the product of the 
difference of S between terminal nodes of each branch 
(represented as ∆S) and the force due to this branch at 
one of the nodes. Hence, this double sum

 

can be 
replaced by a single sum taken over all branches. Thus 
Eqn. (2) takes the form

 

                         

 

B

k k
k=1 1

F ( S ) 0
N

j j
j

P S
=

∆ − =∑ ∑

 

                   (3)

 

Where, 
1

2

N
j

j

bB
=

=∑ . 

Here, ‘B’ represents, in general, the total branch 
DOF of the structural system, ∆Sk

 

is a branch parameter 
defined as the difference between the parameter values 
associated with the pair of the generalized directions 
corresponding to the kth branch DOF and ‘N’ is the total 
number of DOF of the system.

 

The negative sign in Eqn. (3) is a consequence 
of the definition of Fk

 

and ∆Sk

 

together with the 
associated sign relevant to the self equilibrating force 
system in kth

 

branch or more generally the kth

 

branch 
DOF (in the sense that there can be more than one self 
equilibrating system of forces concurrently in the branch 
corresponding to tension, torsion, etc.).

 

Taking advantage of arbitrary nature of 
parameter Sj

 

it will be prudent to define these Sj’s as 
nodal parameters of another conveniently chosen TSS 
which could be distinctly different from the given 
structural system. Equation (3) can then be deduced to 
provide the mathematical statement of the basic 
theorem as:

 

             
1 1

( ) ( ) ( ) ( )
B N

k m k n j m j n
k j

F S P S
= =

∆ =∑ ∑         

 

(4)

 

Where, the subscripts ‘m’ and ‘n’ refer to two 
distinct structural systems with topological similarity as 
their connecting link. This can also be stated as:

 

Sum of the product of internal branch forces of 
a system with the corresponding branch nodal 
parameter differences of another topologically similar 

system is equal to the sum of the product of external 
(self equilibrating) nodal forces of the system with 
corresponding nodal parameters of the topologically 
similar system.  

Here, it may be relevant to mention that if

 

nodal 
parameter ‘Sj’ is nodal displacement then the

 

product 
has units of work/ energy and if it represents rate of 
nodal deformation then the

 

product has units of power 
and so on.

 

Equation (4) can be written in matrix notation 
as:

 

                         { } { } { } { } 0T T
m n m nF S P S∆ − =

 

                  (5)

 

or  0mn mn mnφ ψΦ = − =

 

                   (6)

 

Where, ϕmn

 

represents the first term and ψmn

 

second term in the left hand side of the Eqn.(5).

 
 

Even though, Eqn.(4), Eqn.(5), and Eqn.(6) are 
derived for systems where one deals with discrete set of 
finite nodes and branches, this theorem is equally 
applicable to continuous structures. Since continuum 
can be treated as consisting of infinite DOF and the 
above equations can be used for continuum by 
replacing vectors by functions and the vector products 
by integrals (over the appropriate domain) which 
represent the

 

two terms in Eqn.(5). Each of the 
distribution functions can also be approximated by 
appropriate number of interpolation functions (i.e. 
generalised coordinates) and the resulting integrals of 
Eqn.(5) can also be represented by matrix products 
(e.g. as in

 

FEM formulations). In fact, this equation is 
very wide in its scope and it can be applied to various 
fields of science. It only assumes the state of (static or 
dynamic) equilibrium for its applicability.

 

 

Let Г

 

and Λ

 

be two linear operators which when 
operated upon forces F and generalized parameters S 
of Eqn. (5), result in the most general form of the 
theorem:

 

                   { } { ( )} { } { }T TF S P SΓ ∆ Λ = Γ Λ                     (7)

 

Above equation holds good for any type of 
element, loading/ excitation and boundary/ initial 
conditions. These operators when operated upon F and 
S should not change basic characteristics of F and S.  
These operators can be given a broader meaning which 
allows these operators to represent TSS also. For 
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12

example let Г, Λ represent TSSm and TSSn respectively, 
then Eqn. (7) reduces to Eqn. (5)

a) Weak Form
Interchanging the role of operators in Eqn.(7) 

we get:

                        { } { ( )} { } { }T TF S P SΛ ∆ Γ = Λ Γ (8)

III. General form of basic Theorem



   
 

  

 

  

A linear combination of Eqns. (7) and (8) yields:

 

                      
{ } { ( )} { } { ( )}

{ } { } { } { }

T T

T T

F S F S

P S P S

α

α

Γ ∆ Λ + Λ ∆ Γ

= Γ Λ + Λ Γ
           (9)

 

Where, α

 

is any arbitrary constant. This equation 
is designated as the ‘weak form’ of the theorem. It will 
be useful when the theorem has to be applied twice.

 

b)

 

Variational Form

 

Taking suitable variations over Eqn.(6) gives:

 

                                     [ ] 0mnδ Φ =

 

       

 

  (10)

 

Since, force(s) F and parameter(s) S belong to 
two different systems, it is possible to vary a single 
parameter set of one of the systems at a time without 
affecting all other parameter sets. This formulation can 
have two variants owing to choice of TSS sequence (m 
and n). A brief illustration of the concept of TSS adapted 
to Structural mechanics follows.

 

IV. Topologically

 

Similar

 

Systems

 

To evolve the definition of topologically similar 
system, one has to go to Eqn. (3). In this equation 
second term is the summation over nodes hence, 
number of nodes in TSS should be same. First term of 
the equation is summed over braches hence number of 
branches should be same. As it also involves the 
parameter ∆S which in turn involves two nodes to which 
a branch is connected hence connectivity of branches 
should also be same. If one assures same 
interconnectivity of nodes it will in turn ensure that 
number of branches is same.  Hence, for two systems to 
be topologically similar one has to ensure that total 
number of nodes is same and connectivity of branches 
is also same. Topology can now be defined as unique 
layout of nodes with specified interconnectivity of nodes. 
Systems with same topology are TSS.

 

Moreover, in the derivation of this equation the 
manner in which a branch force is developed is 
immaterial. Hence, systems with same topology (TSS) 
may differ in other details (e.g. material properties, 
boundary conditions, etc.). Illustrations of pairs of TSS 
for discrete structural models and continuum structures 
are given in Ref. [3]. For a given problem there are 
infinite number of TSS, wherein any branch/ element 
parameter can even assume limiting values of zero/ 
infinity (making such branch/ element on a load path 
vanish/ rigid)3. Conditions that

 

continuum system should 
satisfy for being TSS have to be derived in each case. 
For beams and rods/ shafts conditions have been 
derived in Panditta, Ambardhar, et al. [3] and Panditta 
and Maruf [4], respectively.

 

Obtaining equations that can link such systems 
would be a boon for structural analysis. If one succeeds 
in this crucial step, all advantages of the structural 
analysis theorems available for the solution of a single 

system can now be extended to an unlimited group of 
structures which have topological similarity as their link 
(and the only constraint in their choice).

 

Now, the energy principle (PQW) applicable to a 
pair of topologically similar structural systems

 

will be 
deduced from the basic theorem.

 

V. Principal

 

of

 

Quasi

 

Work

 

If generalized parameters (Sj)n

 

in the Basic 
theorem are replaced by generalized displacements (dj)n

 

of TSSn, the following Principle of Quasi Work results:

 

In a pair of TSS, quasi work done by (self 
equilibrating set of) external forces of any one of the 
systems

 

while going through the corresponding

 

(compatible) displacements of the other system, is 
equal to quasi energy due to internal forces of former 
system while going through corresponding deformations 
of the latter system.  

 

In the mathematical form it can be stated as:

 

                                          mn mnW U=   (11)

 

In case of continuum systems, quasi energy is 
computed by utilising stresses of one system and 
strains of other system.

 

a)

 

Proof

 

By replacing {S}n

 

by displacements {d}n

 

and 
branch parameters {∆S}n

 

by branch deformations {δ}n, 
equation (5) becomes:

 

                                  { } { } { } { }T T
m n m nP d F δ=

 

(12)

 

And, hence, Eqn.(11) is proved.

 

Panditta, Shimpi, et al. [5] validated PQW and 
derived useful theorems based on PQW for discrete 
structural models. Panditta, Ambardhar, et al. [3] after 
validating PQW for beams applied it to redundant 
beams with advantage. Panditta and Maruf [4] applied 
PQW to one dimensional structural elements for getting 
deflection without resorting to internal force/ moment 
distributions. Panditta [6] used PQW for calculating 
nodal deflection of trusses with great advantage and   
Panditta [7] applied PQW to columns for obtaining Euler 
critical load without resorting to the solution of 
differential equations. In the next section direct 
application of PQW to

 

indeterminate structures is given.
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VI. Application of pqw to
Indeterminate Structure

Figure 1a shows a uniformly loaded 
indeterminate beam built in at both the ends with length 
L and flexural rigidity E1I1. From symmetry and 
equilibrium considerations RA = RB = w1L/2 and MA = 
MB. Hence, only unknown to be determined is either MA

or MB. This given beam is designated as TES1. In order 
to apply PQW, a pair of TES is needed. In this example, 
a simply supported beam with overhang on both the 



    
  

   
 

sides as given in Fig.1b is selected as TES2. TES are 
topologically equivalent systems in which E1

 

I1= E2

 

I2= 
EI (for beams). Quasi energy U21

 

and quasi work W21

 

for 
this pair is given by:

 

          

2
21 2 1

21 2 1 2 1

2 2 1

(12 ) / 24
{ } { ( / 4)} { } { (3 / 4)}
{ } { ( )} 0

A

C D

U M L M w L EI
W R v L R v L

M v L

= −
= +

′+ =

       (13)

 

W21

 

= 0 as reactions RC = - RD

 

in TSS2

 

and in 
TSS1

 

deflections v (L/4) = v (3L/4) due to symmetry and 
v’

 

(L) = 0. Applying PQW (i.e. U12

 

= W12), one gets MA 
= MB = wL2/12. It can be seen from this simple 
example that PQW

 

connects two distinct structural 
systems and provides solution for one system using the 
solution of other system. This is not possible through 
conventional theorems unless the later beam is a 
statically determinate part of the given problem, which is 
not the case in the present example.

 

 

Figure 1 :

 

Beam with both ends built - in

 

VII. Theorems

 

based

 

on

 

pqw

 

Counterpart of some of the well known energy 
theorems which will be applicable to TSS will now be 
derived from PQW. Pandita [6] has obtained

 

deflection 
theorem, load theorem (counterparts of Castigliano’s 
theorems) and unit load theorem for TSS

 

and has also 
derived relative displacement theorem and its two 
corollaries which make calculation of nodal deflections 
of trusses very easy. Relative displacement theorem6

   

does not have its counterpart in structural analysis. 
Equivalent forms of some other conventional theorems 
are given below:

 

a)

 

Variational Principles for TSS

 

Variational principles applicable to topologically 
similar systems can be derived by considering 
variational form of Eqn. (11):

 

                   ( ) 0mn mn mnU Wδ δπ− = =

 

              (14)

 

   
1 1

  i.e   0
N B

mn mn
jn jm

jn jmj k

d P
d P
π π

δ δ
= =

∂ ∂
+ =

∂ ∂∑ ∑

  

(15)

 

Where, mnπ

 

is the quasi total potential.

 

Making an appropriate choice of variations, 
either in forces or in displacements, Eqn.(14) gives rise 
to:

 

                         

 

     [ ] 0mn
jnd

π∂
=

∂

  

(16)

 

                  or          [ ] 0mn
jmP

π∂
=

∂

  

(17)

 

 
 

Unlike in the concept of total potential where 
one considers only applied loads and ignores reactions 
due to constraints which do no work, in the present 
context both applied forces and constraint reactions 
have to be considered, since the displacement field of 
the TSS can contribute to work terms due to reactions. 
Here, the total quasi potential becomes zero which is 
not the case of the total potential where the condition of 
its stationary value   generates the necessary equations.

 

In Eqns.(16) and (17), the term ‘virtual’ is 
conspicuous by its absence as here one deals with real 
displacements and real forces. Since, both forces {P}m

 

and displacements {d}n

 

are independent of each other 
(as these belong to different systems), it is possible to 
obtain variations with either of these. For the same 
reason, even the use of the term ‘complementary 
energy’ does not find a place in these formulations/ 
theorems.

 

b)

 

Reciprocal Flexibility Theorem for TSS

 

Consider a pair of topologically similar systems 
TSSm

 

and TSSn

 

with corresponding pair of directions i 
and j specified within each of these systems.

 

For a pair of global directions (i and j) defined in 
each of the given

 

pair of TSSm

 

and TSSn; ratio of jmd
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(displacement in direction j due to a unit load in 
direction i of TSSm) and ind is directly proportional to 
ratio of their respective generalized reciprocal flexibilities 
(fji )m and (fij )n corresponding to the pair of directions.
Mathematically, this can be stated as:

                              
( )
( )

j m j i m

i j nj n

d f
fd

=                (18)

i. Proof
From the definition of flexibility coefficients fij

with respect to a pair of global generalized directions i

It may be relevant to state that Eqns.(16) and 
(17) in respect of Topologically identical systems (when 
m=n) correspond to the familiar variational principles 
with the significant difference that πmn should be 
replaced by the total complementary potential energy.



   
 

   

 
 
 

and j

 

for a pair of TSS, the displacements in directions j 
and i in system m and n respectively are given by:

 

                          ( )jm ji m imd f P=

  

(19)

 

                           ( )in ij n jnd f P=

  

              

 

(20)

 

By dividing these equations and substituting 

        

Pim=Pjn=1, one obtains Eqn.(18) which reduces to 
Reciprocal Theorem (i.e. fij=fji), when the pair of systems 
is identical.

 

VIII. Application

 

of

 

pqw

 

to

 

Nonlinear 
Structure

 

Application of PQW and its derivative theorems 
are given Ref. [3-7] for discrete models5

 

and linear 
structures. In this section, an example is included to 
illustrate application of deflection theorem6

 

to a typical 
nonlinear structure.

 

a)

 

Illustration: A Typical Nonlinear Structure

 

Equation for mid span deflection of a simply 
supported beam with a nonlinear elastic prop

 

at the 
centre and subjected to a general case of transverse 
loading (vide Fig.2a) will now be obtained. Here, 
nonlinear characteristic of the prop are chosen to be the 
same as those used in Argyris and Kelsey [8] while 
illustrating the principle of virtual displacement. A typical 
symmetric load distribution as in Fig. 2b is chosen to get 
expression for mid span deflection as given in Ref. 8, as 
a special case there

 

of.

 

For this purpose, a TSS2

 

is chosen as in Fig 1c, 
here, it is termed as TES2

 

by taking E2I2

 

= E1I1

 

=EI.

 

Displacement of TES2

 

can be written as:

 

(21)

 

 

Figure 2 : Indeterminate Beam on a nonlinear support 

The quasi work W12
 is given by: 

                

2

12 1 2 2 2
0

2 2 2 2

2 2 1 2

{ ( )} { ( )}

{ } { ( )}
{ } [ ( )] 

L

B

B

W p x P v x dx

R P v L
P V R v L

=

+
= +

∫

 
(22) 

 

The deflection V at x = L of TES1

 

is:

 

                
12 2 2 1/ { } ( )V W P V f Vβ= ∂ ∂ = −

  
(23) 

Substituting f (V) = V [1+ a / (1 – V / V0)] (vide 
Fig. 1b, where V0

 

is the limiting deformation of the prop) 
yields the following quadratic equation:

 

                
2

0

1 0 0 1 0

(1 ) ( / ) [1 (1 )
/ ] ( / ) / 0

V V a
V V V V V V

β β+ − + +

+ + =

  
   (24)

 

3 3 2
2 2

2 2
3

2 2 2
3

( ) ( 2 3 ) /12
( )   and

( ) / 6 /   

where    / 6

v x P x x L L x EI
P v x

v L P L EI P k

k L EI

β

β

= − < − > −
=

= − = −

=
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2

1 2
0

2 2 2

where, ( ) ( )     and    

( ) ( ) / /

L

V p x v x dx

v L v L P kβ

=

= = −

∫



The value of V1 can be calculated for any given 
loading p(x). For the typical symmetrical linear load 
distribution shown in Fig. 1b, we get:

 

                         
4 5

1
1

5 2
24 15
P L QLV

EI EI
= +

 
  (25)

 

It may be noted that Q = 0 results in an 
expression for V which is identical to the one given in 
Ref. [8],

 

page 10.

 IX. Import

 

on

 

Structural

 

Analysis

 Introduction of this Principle of Quasi Work 
(PQW), in the realm of structural mechanics heralds a 
new phase of structural analysis and has the following 
unique features:

 
a) Conventional energy theorems and variational 

principles are special cases of PQW and its 
derivatives respectively. Hence, this principle has far 
reaching utility.

 
b) It incorporates the advantages of both the force and 

displacement analysis procedures and unifies these 
distinct procedures.

 
c) It dispenses with the concept of ‘virtual 

displacement’, ‘virtual force’ and ‘complimentary 
energy’.

 
d) It offers simpler procedures for redundant structural 

analysis.

 X. Conclusions 

• A new theorem in its various forms has been 
derived. Though, this theorem has potential for 
application in several fields, this paper addresses its 
applications to the field of structural analysis 
through Principle of Quasi Work.

 
• PQW has the distinction of being able to form a link 

between any two distinct topologically similar 
structural systems, thereby, offering a wide choice 
for solving complex structural problems. Such a link, 
for the first time, has paved way for solution of many 
a problem with the help of the solution of a suitably 
chosen topologically similar problem. This has 
made it possible to have

 

new procedures for 
analysis of statically indeterminate structures.

 
• Conventional energy/ variational principles fall out 

as a special case of PQW and its derivatives.

 
• PQW dispenses with the concepts of virtual 

displacements, virtual forces and complementary 
energy.

 
• Utility of PQW through its various derivatives is 

demonstrated by its application to nonlinear 
structures.

 

• Versatility of PQW stands already established by 
various authors through applications to discrete and 
linear continuum structures.
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