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Abstract- The intention of this paper was to analyze prosthetic 
socket of distinct materials and for different geometry for 
optimum design solution by finite element analysis. A modified 
three-dimensional finite element model of the patellar tendon-
bearing (PTB) socket was developed in workbench of ANSYS 
14.0 to find out the stress distribution and deformation pattern 
under functionally appropriate loading condition during normal 
gait cycle. All essential materials used in the analysis were 
assumed to be homogeneous, linearly elastic and isotropic. A 
variety of materials were used for the analysis of the socket like 
Polypropylene, Composite,90/10 PP/PE, HDPE and LDPE. 
Analysis was done on a various thickness of socket and of 
different length along with of different materials commonly 
applied in developing countries. For boundry condition, fixed 
support was applied to the distal end of the socket and vertical 
loads were applied under static condition at pattelar tendon-
brim, medial tibia, lateral tibia and popliteal area during stance 
phase of gate cycle. 
Keywords: patellar tendon-bearing (ptb), trans-tibial (tt) 
prosthesis, finite element (fe) model, socket/stump 
interface stress. 

I. Introduction 

he socket is a basic component for prosthetic 
performance. Below-knee amputees generally 
demonstrate some gait abnormalities such as 

lower walking speed [1], incresed energy cost [2], and 
asymmetries between legs of unilateral amputees in 
stance phase cycle, step length and maximum vertical 
force [3]. Successful fitment of prosthesis may be 
achieved by understanding the biomechanical structure 
of socket and its material, weight, thickness in particular 
to fulfill the desirable load distribution in soft tissues and 
bone of residual limb. Most commonly used socket 
design in developing countries is pattelar tendon 
bearing (PTB) socket developed following the World War 
II at the University of California, Berkeley in the late 1950 
s [4,5]. The Finite Element Method (FEM) has been 
used widely in biomechanics to obtain stress, strain and 
deformation in complicated systems and have been 
identified as an important tool in analysing load transfer 
in prosthesis [6]. The finite element analysis (FEA) 
models have been used to study the effects of the 
inertial loads and contact conditions on the interface 
between  prosthetic  socket  and  stump  of  an amputee  
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during gait cycle [7,8].The finite element methode has 
been used as a tool for parametric study and evaluation 
of prosthetic socket[9,10]. 

It is common for amputees to experience pain 
and discomfort in the residual limb while wearing the 
prosthetic socket [11]. For a lower limb amputee, the 
comfortableness of wearing prosthesis depends on the 
distribution of stress at the interface of residual limb and 
prosthetic socket is either at the pressure-tolerant (PT) 
or pressure-relief (PR) areas. By employing the 
technology of computer-aided engineering, the quality 
uncertainty and labour intensity of traditional process of 
fabricating a prosthetic socket can be improved. Lower 
limb prosthesis allows ambulation and improves the 
performance of daily routine activities. However, poor-
fitted socket can lead to complications that have 
adverse effects on the activity level and gait cycle of 
people with lower limb amputation [12]. 

The interface between the stump of lower limb 
amputees and their prostheses is the prosthetic socket. 
The contact pressure at the residual limb and prosthetic 
socket interface is an essential index, and is considered 
as a promising measure towards good socket design. 
Therefore, the fundamental concern is to understand 
pressure distribution at the stump-socket interface. 
Although the use of pressure sensor is a direct 
experimental approach towards estimating interface 
pressure, the analytical approach is an alternating to the 
experimental one, and finite element modeling of the 
socket has been used to analyse the contact pressure. 
Although, the complex features of the soft limb tissues 
and of their interaction with the socket still remains 
difficult to model [13].  

The variation of interface pressure between the 
stump and socket is an important factor in socket 
design and fit. Lower limb prosthetic socket users 
experience pressure between the stump and socket 
during daily routine activities. The underlying soft tissues 
and skin of the stump are not habitual to weight bearing; 
thus, there is the risk of degenerative tissue ulcer in the 
stump because of cyclic or constant peak pressure 
applied by the prosthetic socket [14]. The pressure also 
can lead to various skin deases such as follicular 
hyperkeratosis, allergic contact dermatitis, infection and 
veracious hyperplasia [15-17].  

Despite significant scrutiny in the field of 
prosthetics in the previous decades, still many 
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amputees experience pressure ulcers with the use of 
prostheses. Sometimes, skin problems lead to chronic 
infection, which may necessitate re-amputation. This will 
obviate the long-term use of prosthesis, which 
indicatively reduces the routine activities of prosthesis 
users and the quality of life [18]. Many studies have 
concentrated on interface pressure magnitude between 
the socket and stump during level walking [19-20].  

a) Trans-Tibialprosthesis Description 
The artificial limb consists of a foot-ankle unit 

which needs to be attached to the remainder of the 
amputee's natural leg or stump. The foot ankle unit is 
attached directly to the socket frame. The artificial shank 
can be attached to the foot ankle unit and then attached 
to the socket frame for a below-knee amputation. Today 
the sockets are roughly quadrilateral in shape. They 
attempt to have total contact between the stump and the 
socket. 

II. Finite Element Model 

A frequently used numerical analysis technique 
in biomechanics is the finite element technique, a 
computational approach for interface stress or structural 
deformation calculation evoluted in engineering 
mechanics. It has been introduces as a useful tool to 
understand the load transfer mechanics between a 
residual limb and its prosthetic socket. The finite 
element technique is a full-field analysis for calculating 
the state of stress and elestic strain in the specific field. 
This technique is well suited for parametric analysis in 
the process of design. The previous finite element 
analyses showed the significance of considering 
prestress in predicting interface stresses at loading 
stage[21-22]. 

One left unilateral male trans-tibial amputee 
participated in this study. The volunteer was 45 years of 
age, 166 cm tall, 70 kg in mass, and the cause of his 
amputation was an accident. He has been an active 
amputee for five years, using his prosthetic limb for all 
his daily chores. The simplified geometry of his residual 
limb was modeled in Pro-engineer and then it is being 
imported (in IGES formate) and modified in ANSYS 14.0 
Workbench. 

The finite element model was kept as simple as 
possible in terms of material properties and boundary 
conditions. Different materials for 2 mm, 3 mm, 4 mm, 5 
mm, and 6 mm unit volume layer thickness was used for 
creating the 3-D FE model. Also the three dimension 
finite element model is developed for varrying the length 
of the socket of 16 cm, 17 cm, 18 cm, 19 cm, 20 cm, 21 
cm. The model was meshed with brick element solid 
185 with fused tibia and fibula bones. A total of 41,073 
elements and 20,438 nodes were used. 
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Properties of different socket material
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Stance phase and Maximum vertical ground
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Finite Element Modelling and Analysis of Trans-Tibial Prosthetic Socket

Material YM 
(MPa)

Density 
(Kg/m3)

US 
(MPa)

PR

Composite 1,600 1194 144 0.39
Polypropylene 1,100 910 80 0.37

PP/PE 1,500 830 39 0.3
HDPE 800 950 37 0.40
LDPE 280 920 25 0.41

Five phases 
of stance

Percentage Variation 
of 

GRF(N)

Maximum 
GRF(N)

Initial 
Contact/Heel 
Strike (HS)

(0-13)% 0-620 620

Foot 
Flat/Loading 
Response 

(LR)

(13-38)% 620-1000 1000

Mid-Stance 
(MS)

(38-63)% 510-707 707

Terminal 
Stance/Heel 

Off (HO)

(63-88)% 630-1000 1000

Pre-Swing/Toe 
Off (TO)

(88-100)% 0-810 810

IV. Results

The results for total deformation, shear stress 
and equivalent von-Mises stress of developed and 
modified transtibial socket model were obtained by 
using (ANSYS Workbench v14.0) program. Figure (1) 
shows the meshed view of the finite element three 
dimension socket model, and figure (2) shows the 
maximum von-Mises stress developed for different 
loading conditions of stance phase like Initial 

On the meshed model fixed support is being 
applied at the distal end of the socket, distal end of the 
socket is further attached with the remaining parts of the 

prosthesis like shank, ankle foot. The different loading 
conditions as listed in table 2 were quasi-static 
approximations using experimentally obtained maximum 
vertical ground reaction for the prosthetic side of same 
subject while walking at a given speed using CGD gait 
cycle analyzer [24-27].

III. Material Properties

In this analysis the different material used are 
composite, polypropylene, 90/10 PP/PE (90% 
polypropylene and 10% ethylene), high density 
polyethylene (HDPE) and low density polyethylene 
(LDPE). The mechanical properties of the socket 
material were assumed to be linearly elastic, isotropic 
and homogeneous. Socket were analyzed for different 
materials and their valus of Young’s modulus, Ultimate 
strength, Poisson’s ratio and density is listed in table 1.
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Finite Element Modelling and Analysis of Trans-Tibial Prosthetic Socket

Contact/Heel Strike (HS), Foot Flat/Loading Response 
(LR), Mid-Stance (MS), Terminal Stance/Heel Off (HO) 
and Pre-Swing/Toe Off (TO).

             Figure 1 : Meshed view                        Figure 2 : Equivalent von-Mises stress at different stance

Figure 3 : shows the shear stress and  figure (4) shows the total deformation developed  for different loading 
conditions like Initial Contact/Heel Strike (HS), Foot Flat/Loading Response (LR), Mid-Stance (MS), Terminal 

Stance/Heel Off (HO) and Pre-Swing/Toe Off (TO) of stance phase

The maximum values of von-Mises stress, shear 
stress and total deformation occure in five phases of 
stance under the load of 1000 N are listed in the table 3 
as shown below.

Table 3 : von-Mises stress, Shear stress and Total 
deformation at different phases of stance at 1000 N of 

load

Stance phase von-
Mises 
stress 
(MPa)

Shear 
stress 
(MPa)

Total 
deformation 

(mm)

Initial 
Contact/Heel 
Strike (HS)

6.55 1.02 0.55

Foot Flat/Loading 
Response (LR)

10.54 1.64 0.88

Mid-Stance (MS) 7.45 1.16 0.63
Terminal 

Stance/Heel Off 
(HO)

10.54 1.64 0.88

Pre-Swing/Toe Off 
(TO) of stance 

phase

8.54 1.33 0.72

Figure 3 : Shear Stress
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Finite Element Modelling and Analysis of Trans-Tibial Prosthetic Socket

Figure 4 : Total deformation

Different approaches have been used to 
analyzed for socket material and thickness optimization:

a) Socket thickness vs Factor of safety
For different thickness of composite, 

polypropylene (PP), 90/10 PP/PE, HDPE and LDPE 
materials the weight of the socket were calculated and 
listed in table 4.

b) Tsai-Hill Criterion for socket failure
Socket failure is analyzed by Tsai-Hill Criterion 

based on maximum distortion criterion and used in this 
analysis to compare socket failure [23].

          Tsai-Hill Criterion, CTH = 𝜎𝜎1
2

𝑆𝑆𝑣𝑣2
− 𝜎𝜎1∗𝜎𝜎2

𝑆𝑆𝑣𝑣2
+ 𝜎𝜎2

2

𝑆𝑆𝑡𝑡
2 + 𝜏𝜏2

𝑆𝑆𝑠𝑠ℎ
2

Where CTH is the Tsai-Hill failure coefficient, Sv, 
St and Ssh are the ultimate strengths of composite in 
the vertical, transverse and shear directions respectively 
listed in table 5 and σ1, σ2 and τ are the imposed 
stresses in the longitudinal, transverse, and shear 
planes. If the value of CTH is less than one than design 
is safe.

Table 4 : Weight of socket in grams [30]

Thickness
(mm)

Composite PP PP/P
E

HDP
E

LDP
E

2
3
4
5
6

140
209
280
350
420

106
160
212
266
320

102
155
208
261
315

111
168
214
278
334

107
174
222
269
323

Table 5 : Tensile and compressive strength of 
composite [31]

c) Structural Behavior vs Length
The values of maximum von-Mises stress, shear 

stress and total deformation off all the material in 
different length were analyzed and shown in figures 11-
13, and it is found that as the length of socket increses 
the values of stress and deformation decreases. The 
decrease in value of deformation as increase of length is 
higher in case of LDPE material.

d) Structural Behavior vs Thickness
The values of maximum von-Mises stress, shear 

stress and total deformation off all the material in 
different thickness were analyzed and shown in figures 
8-10, and it is found that as the thickness of socket 
increses the values of stress and deformation 
decreases. The decrease in value of deformation as 
increase of thickness is higher in case of LDPE material.

Strength                     
(in MPa)

Sv St Ssh

Tension 584 43 44

Compression 803 187 64
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Finite Element Modelling and Analysis of Trans-Tibial Prosthetic Socket

Figure 5 : Equivalent von-Mises stress at pressure tolerated areas in stance phase of gait cycle during normal 
walking on plane surface at a given speed

a) Case 1 : Weight of the socket
The variation of factor of safety as a function of 

Weight of the socket for a socket of different thickness is 
shown in figure 7, where factore of safety is being 
calculeted by dividing maximum von-Mises stress at a 
load of 620 N with the endurance limit (50% ultimate 
tensile strength value) [28]. During daily activities of an 
amputee the total load of knee joint in transtibial 
prosthesis passes on the prosthetic socket. During 
normal walking , the total joint reaction forces at knee 
joint is three to four times increases than the total body 
weight, during jumping and fast running load on knee 
joint increses more [29]. Therefore, six factore of safety 
is minimum desirable to withstand the loading of socket. 
The factor of safety is just below the level of five for 
LDPE and HDPE so, it can be suggested that LDPE and 
HDPE are note suitable for prosthetic socket design.

b) Case 2 : Analysis of failure
The finite element simulation result of rotation 

and displacement in different parts of socket validate 
the biomechanical requirement of structural integrity in 
patellar tendon bearing socket. Figure 7 shown below 
describes the variation of Tsai-Hill coefficient with tensile 
and compressive strength. The value of CTH coefficient 
in 2mm thick composite for tensile strength is 
0.1864wich is only five times factore of safety but 
thickness between 3 mm (0.0724) to 4 mm (0.031) has a 
factore of safety more than twenty times. Therefore, the 
optimum solution of composite material of thickness 3 
mm to 4 mm satisfied the Tsai-Hill criterion. 

Figure 6 : Weight of socket in reference to Factor of 
safety

Figure 7 : Tsai-Hill coefficient with 620N load in tension 
and compression
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Finite Element Modelling and Analysis of Trans-Tibial Prosthetic Socket

c) Case 3 : Thickness of the socket
In all materials it is found that the von-Mises 

stress, shear stress and total deformation is inversely 
proportional to thickness except for LDPE of the socket 
figure 8-10. However the stress and stress variation 
were higher in case of 2mm and 3 mm socket and it is 
relatively low in case of 4mm and 6mm. Thus 3 mm to 4 
mm could be a optimal solution in terms of thickness of 
the socket for all materials where this much thickness is 
used. The variation of von-Mises stress, shear stress 
and total deformation for different thickness of prosthetic 
socket were shown in figure 8, 9 and 10 respectively. 
The value of total deformation in case of LDPE of 
thickness less than 3 mm goes higher and it may loss 
biomechanical load bearing ability. Thus the result 
indicates that the LDPE socket length is not suitable fore 
fabrication of PTB socket of below 4 mm thickness.

Figure 8 : Equivalent von-Mises stress in different 
thickness of composite, PP, PP/PE, HDPE and LDPE at 

1000 N

Figure 9 : Shear stress in different thickness of 
composite, PP, PP/PE, HDPE and LDPE at 1000 N

Figure 10 : Total deformation in different thickness of 
composite, PP, PP/PE, HDPE and LDPE at 1000 N

Figure 11 : Equivalent von-Mises stress in different 
length of composite, PP, PP/PE, HDPE and LDPE at 

1000 N

e) Case 4 : Length of the socket
In all materials it is found that the von-Mises 

stress, shear stress and total deformation is inversely 
proportional to length of the socket figure 11-13. 
However the stress and stress variation were higher in 
case of 16 and 17 cm length socket and it is relatively 
low in case of 19cm and 20cm. Thus 19 cm to 20cm 
could be a viable solution in terms of length of the 
socket for all materials where this much length is 
possible. The variation of von-Mises stress, shear stress 
and total deformation for different length of prosthetic 
socket were shown in figure 11, 12 and 13 respectively. 
The value of total deformation in case of LDPE of length 
less than 16 cm goes higher and it may loss 
biomechanical load bearing ability. Thus the result 
indicates that the LDPE socket length is not suitable fore 
fabrication of PTB socket of below 16cm length. 
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Finite Element Modelling and Analysis of Trans-Tibial Prosthetic Socket

Figure 12 : Shear stress in different length of composite, 
PP, PP/PE, HDPE and LDPE at 1000 N

Figure 13 : Total deformation in different length of 
composite, PP, PP/PE, HDPE and LDPE at 1000 N

VI. Conclusions
The results summarized that assimilating local 

submissive properties within socket wall can be an 
effective methods to distribute maximum stress areas 
and also to relief contact pressure between the socket 
and stump. Based on the results and the discussion, the 
composite material is cheap, excellent strength, widely 
available butit has high weight that make it only useful to 
be used for adult with higher weights. The results 
obtained from analysis can be used as a reference to 
choose socket material, thickness and its optimal length 
for manufacturing of socket in developing countries. The 
socket buildup of composite material gives the optimal 
solution for patellar-tendon bearing socket design. The 

study reconnoitered further future scope for parametric 
analysis, investigating the effects of liner, socket 
stiffness, rectification scheme, soft tissues, and 
materials for the socket/stump interface stress 
distribution.
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