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Abstract10

Digital intercept receivers are moving away from Fourier-based analysis towards classical11

time-frequency analysis techniques along with other novel analysis techniques for the purpose12

of analyzing low probability of intercept radar signals. This paper presents a novel approach13

of the joint sequential use of the Reassigned Smooth Pseudo Wigner-Ville Distribution and14

the Hough Transform versus the Reassigned Smooth Pseudo Wigner-Ville Distribution for15

characterizing low probability of intercept triangular modulated frequency modulated16

continuous wave radar signals. The metrics used for evaluation were - percent error of the17

chirp rate, percent detection, and lowest signal-to-noise ratio for signal detection.18

Experimental results demonstrate that overall, the joint sequential use of the Reassigned19

Smooth Pseudo Wigner-Ville Distribution and the Hough Transform signal processing20

techniques produced more accurate metrics than the Reassigned Smooth Pseudo Wigner-Ville21

Distribution signal processing technique. An improvement in the accuracy of metrics may well22

equate to an increase in personnel safety.23

24

Index terms—25

1 I. Introduction26

he Low Probability of Intercept (LPI) signal used for this paper is the Frequency Modulated Continuous Wave27
(FMCW) signal, which is commonly used in modern radar systems [WAN10], [WON09], [WAJ08]. The frequency28
modulation spreads the transmitted energy over a large modulation bandwidth Î?”??, providing good range29
resolution that is essential for discriminating targets from clutter. The power spectrum of the FMCW signal is30
nearly rectangular over the modulation bandwidth, so non-cooperative interception can be a challenge. Since31
the transmit waveform is deterministic, the form of the return signals can be predicted. This gives it the added32
advantage of being resistant to interference (such as jamming), since any signal not matching this form can be33
suppressed ??WIL06]. Consequently, it is difficult for an intercept receiver to detect the FMCW waveform and34
measure the parameters accurately enough to match the jammer waveform to the radar waveform [PAC09].35

The most prevalent linear modulation utilized is the triangular FMCW emitter [LIA09], since it can measure36
the target’s range and Doppler [MIL02], ??LIW08]. Triangular modulated FMCW is the waveform that is37
employed for this paper.38

Time-frequency signal analysis involves the analysis and processing of signals with time-varying frequency39
content. These signals are best represented by a time-frequency distribution [PAP95], [HAN00], which shows40
how the energy of the signal is distributed over the two-dimensional time-frequency plane [WEI03],41
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1 I. INTRODUCTION

[LIX08], ??OZD03]. Processing of the signal can exploit the features produced by the concentration of signal42
energy in two dimensions (time and frequency), instead of in one dimension (time or frequency) [BOA03],43
??LIY03]. Noise tends to spread out evenly over the timefrequency domain, whereas signals concentrate their44
energies within limited time intervals and frequency bands; therefore, the local SNR of a ’noisy’ signal can be45
improved simply by using time-frequency analysis [XIA99]. In addition, the intercept receiver can increase its46
processing gain simply by implementing timefrequency signal analysis ??GUL08].47

Time-frequency representations are valuable for the visual interpretation of signal dynamics [RAN01]. An48
experienced operator can more easily detect a signal and extract the signal parameters by analyzing a49
timefrequency representation, vice a time representation, or a frequency representation [ANJ09].50

One of the members of the time-frequency analysis techniques family is the Wigner-Ville Distribution (WVD).51
The WVD has several desirable mathematical properties: it is always real-valued, it preserves time and frequency52
shifts, and it satisfies marginal properties [QIA02]. The WVD is computed by correlating the signal with a53
time and frequency translated version of itself, making it bilinear. The WVD has the highest signal energy54
concentration in the time-frequency plane ??WIL06]. By using the WVD, an intercept receiver can come close55
to having a processing gain near the LPI radar’s matched filter processing gain [PAC09]. The WVD, however,56
contains cross term interference ()157

The WVD of a signal ??(??) is given in equation ( 1) as:?? ?? (??, ð�??”ð�??”) = ? ??(?? + ?? 2 +? -? )?? *58
??? - ?? 2 ? ?? -?? 2??ð�??”ð�??”?? ????59

or equivalently in equation ( ??) as:?? ?? (??, ð�??”ð�??”) = ? ??(ð�??”ð�??” + ?? 2 +? -? )?? * ?ð�??”ð�??” -60
?? 2 ? ?? ?? 2?????? ????61

A lack of readability must be overcome to obtain time-frequency distributions that can be easily read by62
operators and easily included in a signal processing application [BOA03].63

Some efforts have been made recently in that direction, and in particular, a general methodology referred to64
as reassignment.65

The original idea of reassignment was introduced to improve the Spectrogram [OZD03]. As with any other66
bilinear energy distribution, the Spectrogram is faced with an unavoidable trade-off between the reduction of67
misleading interference terms and a sharp localization of the signal components.68

We can define the Spectrogram as a twodimensional convolution of the WVD of the signal by the WVD of69
the analysis window, as in equation ( ??):(3) ?? ?? (??, ð�??”ð�??”; ?) = ? ?? ?? +? -? (??, ??)?? ? (?? -??,70
ð�??”ð�??” -??)????????71

Therefore, the distribution reduces the interference terms of the signal’s WVD, but at the expense of time and72
frequency localization. However, a closer look at equation (3) shows that ?? ? (?? -??, ð�??”ð�??” -??) delimits a73
time-frequency domain at the vicinity of the (??, ð�??”ð�??”) point, inside which a weighted average of the signal’s74
WVD values is performed. The key point of the reassignment principle is that these values have no reason to be75
symmetrically distributed around (??, ð�??”ð�??”) , which is the geometrical center of this domain. Therefore,76
their average should not be assigned at this point, but rather at the center of gravity of this domain, which is77
much more representative of the local energy distribution of the signal [AUG94]. Reasoning with a mechanical78
analogy, the local energy distribution ?? ? (?? -??, ð�??”ð�??” -??)?? ?? (??, ??) (as a function of ?? ??????79
?? ) can be considered as a mass distribution, and it is much more accurate to assign the total mass (i.e. the80
Spectrogram value) to the center of gravity of the domain rather than to its geometrical center. Another way to81
look at it is this: the total mass of an object is assigned to its geometrical center, an arbitrary point which except82
in the very specific case of a homogeneous distribution, has no reason to suit the actual distribution. A much83
more meaningful choice is to assign the total mass of an object, as well as the Spectrogram value, to the center84
of gravity of their respective distribution [BOA03]. This is precisely how the reassignment method proceeds: it85
moves each value of the Spectrogram computed at any point (??, ð�??”ð�??”) to another point (?? ,ð�??”ð�??” ?)86
which is the center of gravity of the signal energy distribution around (??, ð�??”ð�??”) (see equations (4) and (87
??)) [LIX08]:88

(5)?? (??; ??, ð�??”ð�??”) = ? ???? ? (?? -??, ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -? ? ?? ? (?? -??,89
ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -? ð�??”ð�??” ?(??; ??, ð�??”ð�??”) = ? ???? ? (?? -??, ð�??”ð�??”90
-??)?? ?? (??, ??)???????? +? -? ? ?? ? (?? -??, ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -?91

and thus, leads to a reassigned Spectrogram (equation ( ??)), whose value at any point (?? ? , ð�??”ð�??” ? )92
is the sum of all the Spectrogram values reassigned to this point:(6) ?? ?? (??) (?? ? , ð�??”ð�??” ? ; ?) = ? ??93
??94

One of the most interesting properties of this new distribution is that it also uses the phase information of the95
STFT, and not only its squared modulus as in the Spectrogram. It uses this information from the phase spectrum96
to sharpen the amplitude estimates in time and frequency. This can be seen from the following expressions of the97
reassignment operators: Since time-frequency reassignment is not a bilinear operation, it does not permit a stable98
reconstruction of the signal. In addition, once the phase information has been used to reassign the amplitude99
coefficients, it is no longer available for use in reconstruction. For this reason, the reassignment method has100
received limited attention from engineers, and its greatest potential seems to be where reconstruction is not101
necessary, that is, where signal analysis is an end unto itself.??102

One of the most important properties of the reassignment method is that the application of the reassignment103
process to any distribution of Cohen’s class theoretically yields perfectly localized distributions for chirp signals,104
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frequency tones, and impulses. This is one of the reasons that the reassignment method was chosen for this paper105
as a signal processing technique for analyzing LPI radar waveforms such as the triangular modulated FMCW106
waveforms (which can be viewed as back-to-back chirps).107

To rectify the classical time-frequency analysis deficiency of cross-term interference, a method needs to be108
utilized that reduces cross-terms, which the reassignment method does.109

The reassignment principle for the Spectrogram allows for a straight-forward extension of its use for other110
distributions as well [HIP00], including the WVD. If we consider the general expression of a distribution of the111
Cohen’s class as a two-dimensional convolution of the WVD, as in equation ( ??1):(11) ?? ?? (??, ð�??”ð�??”; ?)112
= ? ?(?? -??, ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -?113

replacing the particular smoothing kernel ?? ? (??, ??) by an arbitrary kernel ?(??, ??) simply defines the114
reassignment of any member of Cohen’s class (equations ( ??2) through ( ??4)): Now if we reverse our variables115
and look instead at the values of (??, ??) as a function of the image point coordinates (?? ?? , ?? ?? ), then116
?? ?? = ???? ?? + ?? becomes ?? = ?? ?? -???? ?? which also describes a straight line.(12) (14) ?? (??; ??,117
ð�??”ð�??”) = ? ???(?? -??, ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -? ? ?(?? -??, ð�??”ð�??” -??)?? ?? (??,118
??)???????? +? -? ð�??”ð�??” ?(??; ??, ð�??”ð�??”) = ? ???(?? -??, ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -?119
? ?(?? -??, ð�??”ð�??” -??)?? ?? (??, ??)???????? +? -? ?? ?? (??) (?? ? , ð�??”ð�??” ? ; ?) = ? ?? ?? +? -?(120

Consider two points ??1 and ??2, which lie on the same line in the (??, ??) space. For each point, we can121
represent all possible lines through it by a single line in the (??, ??) space. Therefore, a line in the (??, ??) space122
that passes through both points must lie on the intersection of the two lines in the (??, ??) space representing123
the two points. This means that all points which lie on the same line in the (??, ??) space are represented by124
lines which all pass through a single point in the (??, ??) space.125

To avoid the problem of infinite ?? values which occurs when vertical lines exist in the image, an alternative126
formulation, ?? = ?? cos ?? + ?? sin ?? (the parametric representation of a line) can be used to describe a line127
[CAR94], [DAH08]. This means that a point in the (??, ??) space (image space) is now represented by a sinusoid128
in (??, ??) space (parameter space) rather than by a straight line. Points lying on the same line in the (??, ??)129
space define sinusoids in the parameter space which all intersect at the same point. The more points that exist130
on that particular line in image space; the more sinusoids will intercept at that particular point in parameter131
space, and consequently, the more the accumulator value at this point (parameter space) will increase, forming132
a ’spike’ in the parameter space. Therefore, ’spikes’ (peak values) in the parameter space correspond to lines in133
the image space. The coordinates of the point of intersection of the sinusoids in the parameter space define the134
parameters of the line in the (??, ??) space (image space). For example, if we apply the Hough transform to135
the WVD of a chirp (line), we obtain a peak in the parameter space located in a position which depends on the136
parameter values (such as chirp rate) of the chirp (line) in the image space (the WVD plot) [SHA07] [XUL93].137

This can best be shown by Figure ?? below: Figure ??: Time-frequency plot on the left and Hough transform138
plot on the right. A point in the TF plot maps to a sinusoidal curve in the HT plot. A line (signal) in the TF plot139
maps to a point in the HT plot. The rho and theta values of the point in the HT plot can be used to back-map140
to the TF plot, in order to find the location of the line (signal) (good if time-frequency plot is cluttered with141
noise and/or cross-term interference and signal is not visible)142

In Figure ??, the image space (time-frequency plot) is on the left and the parameter space (twodimensional143
Hough transform plot) is on the right. Each point in the image space maps to a sinusoidal curve in the parameter144
space. The points 1, 2, and 3 in the image space map to the sinusoidal curves 1, 2, and 3 in the parameter space.145
In the parameter space, the intersection of the sinusoidal curves 1, 2, 3 at the point rho (x), theta (x) corresponds146
to the line connecting the points 1, 2, and 3 in the image space (same rho (x) and theta(x) values) [ISI96]. The147
more sinusoidal curves in the parameter space that pass through a particular point, the higher the accumulator148
value of that point will be and the higher the three-dimensional Hough Transform ’spike’ will be [OLM01].149
The presence of a peak in the parameter space reveals the presence of Where ?? is the Dirac delta function.150
With ð�??”ð�??”(??, ??) (as noted in the figure above), each point (??, ??) in the original image ð�??”ð�??” , is151
transformed into a sinusoid ?? = ?? cos ?? + ?? sin ?? , where, in the image, ?? is the perpendicular distance152
from the center of the image to the line at an angle ?? from the vertical axis passing through the center of the153
image. Again, points that lie on the same line in the image will produce sinusoids that all cross at a single point154
in the Hough plot.155

The expression above gives the projection (line integral) of ð�??”ð�??”(??, ??) along an arbitrary line in the156
x-y plane. By definition, the Hough Transform computes the integration of the values of an image over all its157
lines.158

From the signal location (rho and theta values) of the Hough transform plot, it is possible to back-map back159
to the signal location in the time-frequency representation, using the same exact rho and theta values.160

Let’s give an example of back-mapping, starting with the Hough Transform plot in Figure 2: The ability of the161
Hough Transform to perform well in low SNR environments, as well as in heavy crossterm environments makes it162
an ideal signal analysis tool to offset the classical time-frequency analysis deficiencies of cross-term interference163
and mediocre performance in low SNR environments. This makes for better readability, leading to more accurate164
parameter extractions for the intercept receiver signal analyst.165

The joint sequential use of the RSPWVD and the Hough Transform (HT) will be used in this paper.166
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2 II. METHODOLOGY

2 II. Methodology167

The methodologies detailed in this section describe the processes involved in obtaining and comparing metrics168
between the joint sequential use of the Reassigned Smoothed Pseudo Wigner-Ville Distribution and the Hough169
Transform vs. the Reassigned Smoothed Pseudo Wigner-Ville Distribution signal processing techniques for the170
detection and characterization of low probability of intercept triangular modulated FMCW radar signals.171

The tools used for this testing were: MATLAB (version 8.3), Signal Processing Toolbox (version 6.21), and172
Time-Frequency Toolbox (version 1.0) (http://tftb. nongnu.org/).173

All testing was accomplished on a desktop computer (Dell Precision T1700; Processor -Intel Xeon CPU E3-1226174
v3 3.30GHz; RAM -32.0GB; System type -64-bit operating system, x64-based processor).175

Testing was performed for the triangular modulated FMCW waveform, whose parameters were chosen for176
academic validation of signal processing techniques. Due to computer processing resources they were not meant177
to represent real-world values. The number of samples was chosen to be 512, which seemed to be optimum size178
for the desktop computer. Testing was performed at three different SNR levels: 10dB, 0dB, and the lowest SNR179
at which the signal could be detected. The noise added was white Gaussian noise, which best reflects the thermal180
noise present in the IF section of an intercept receiver [PAC09]. Kaiser windowing was used, where windowing181
was applicable. 100 runs were performed for each test, for statistical purposes. The plots included in this paper182
were done at a threshold of 5% of the maximum intensity and were linear scale (not dB) of analytic (complex)183
signals; the color bar represented intensity. The signal processing techniques used for each task were the joint184
sequential use of the Reassigned Smoothed Pseudo Wigner-Ville Distribution and the Hough Transform vs. the185
Reassigned Smoothed Pseudo Wigner-Ville Distribution.186

The triangular modulated FMCW signal (most prevalent LPI radar waveform [LIA09]) used had the following187
parameters: sampling frequency=4KHz; carrier frequency=1KHz; modulation bandwidth= 500Hz; modulation188
period=.02sec.189

After each individual run for each individual test, metrics were extracted from the time-frequency representa-190
tion. The metrics that were extracted were as follows:191

1) Percent Detection: Percent of time signal was detected -signal was declared a detection if any portion of192
each of the signal components (4 chirp components for triangular modulated FMCW) exceeded a set threshold193
(a certain percentage of the maximum intensity of the time-frequency representation).194

Threshold percentages were determined based on visual detections of low SNR signals (lowest SNR at which195
the signal could be visually detected in the timefrequency representation) (see Figure ??).196

Figure ??: Threshold percentage determination. This plot is a time vs. amplitude (x-z view) of a signal197
processing technique of a triangular modulated FMCW signal (512 samples, with SNR=-3dB). For visually198
detected low SNR plots (like this one), the percent of max intensity for the peak z-value of each of the signal199
components (the 2 legs for each of the 2 triangles of the triangular modulated FMCW) was noted (here 61%,200
91%, 98%, 61%), and the lowest of these 4 values was recorded (61%). Ten test runs were performed for this201
waveform for each of the signal processing techniques that were used. The average of these recorded low values202
was determined and then assigned as the threshold for that particular signal processing technique Based on the203
above methodology, thresholds were assigned as follows for the signal processing techniques used for this paper:204
RSPWVD + HT (60%); RSPWVD (60%).205

For percent detection determination, these threshold values were included for each of the signal processing206
technique algorithms so that the thresholds could be applied automatically during the plotting process. From the207
time-frequency representation threshold plot, the signal was declared a detection if any portion of each of the signal208
components was visible (see Figure 5). The threshold percentage was determined based on manual measurement of209
the modulation bandwidth of the signal in the time-frequency representation. This was accomplished for ten test210
runs for each of the signal processing techniques that were used, for the triangular modulated FMCW waveform.211
During each manual measurement, the max intensity of the high and low measuring points was recorded. The212
average of the max intensity values for these test runs was 20%. This was adopted as the threshold value and is213
representative of what is obtained when performing manual measurements. This 20% threshold was also adapted214
for determining the modulation period and the time-frequency localization (both are described below).215

For modulation bandwidth determination, the 20% threshold value was included for each the signal processing216
technique algorithms so that the threshold could be applied automatically during the plotting process. From217
the threshold plot, the modulation bandwidth was manually measured (see Figure 6). For modulation period218
determination, the 20% threshold value was included for each of the signal processing technique algorithms so219
that the threshold could be applied automatically during the plotting process. From the threshold plot, the220
modulation period was manually measured (see Figure 7). For lowest detectable SNR determination, these221
threshold values were included for each of the signal processing technique algorithms so that the thresholds222
could be applied automatically during the plotting process. From the threshold plot, the signal was declared a223
detection if any portion of each of the signal components was visible. The lowest SNR level for which the signal224
was declared a detection is the lowest detectable SNR (see Figure 8). From this threshold plot, the signal was225
declared a (visual) detection because at least a portion of each of the 4 signal components (the 2 legs for each of226
the 2 triangles of the triangular modulated FMCW) was visible. Note that the signal portion for the two 61%227
max intensities are barely visible, because the threshold for this particular signal processing technique is 60%.228
For this case, any lower SNR than -3dB would have been a non-detect229
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The data from all 100 runs for each test was used to produce the actual, error, and percent error for each of230
the metrics listed above.231

The metrics for the joint sequential use of the Reassigned Smoothed Pseudo Wigner-Ville Distribution and the232
Hough Transform, along with the metrics for the Reassigned Smoothed Pseudo Wigner-Ville Distribution were233
generated. By and large, the joint sequential use of the Reassigned Smoothed Pseudo Wigner-Ville Distribution234
and the Hough Transform (RSPWVD + HT) outperformed the Reassigned Smoothed Pseudo Wigner-Ville235
Distribution (RSPWVD), as will be shown in the results section.236

3 III. Results237

Table 1 presents the overall test metrics for the two signal processing techniques used for this testing (the238
joint sequential use of the Reassigned Smoothed Pseudo Wigner-Ville Distribution and the Hough Transform239
(RSPWVD + HT) versus the Reassigned Smoothed Pseudo Wigner-Ville Distribution (RSPWVD)). 1, RSPWVD240
+ HT outperformed RSPWVD in average percent error chirp rate (10dB: 0.41% vs. 1.58%), (0dB: 0.51% vs.241
2.81%), and (-3dB: 0.68% vs. 5.74%). RSPWVD + HT outperformed RSPWVD in average percent detection242
(10dB: 100% vs. 100%), (0dB: 100% vs. 92.4%), and (-3dB: 72.8% vs. 8.21%). RSPWVD + HT outperformed243
RSPWVD in average lowest detectable SNR (-5.04dB vs. -3.02dB).244

Figure 9 shows comparative plots of the RSPWVD (left) vs. the RSPWVD + HT (right) (triangular modulated245
FMCW signal) at SNRs of 10dB (top row), 0dB (middle row), and lowest detectable SNR (-3dB for RSPWVD246
and -5dB for RSPWVD + HT) (bottom row).247

4 IV. Discussion248

This section will elaborate on the results from the previous section.249
From Table 1, RSPWVD + HT outperformed RSPWVD in average percent error chirp rate (10dB: 0.41%250

vs. 1.58%), (0dB: 0.51% vs. 2.81%), and (-3dB: 0.68% vs. 5.74%). RSPWVD + HT outperformed RSPWVD251
in average percent detection (10dB: 100% vs. 100%), (0dB: 100% vs. 92.4%), and (-3dB: 72.8% vs. 8.21%).252
RSPWVD + HT outperformed RSPWVD in average lowest detectable SNR (-5.04dB vs. -3.02dB).253

In previous research it was shown that the reassignment method, with its squeezing and For the RSPWVD +254
HT combination, the squeezing quality of the reassignment method, combined with the integration carried out255
by the Hough transform, makes for ’tighter’ signals (equals more accurate theta value extraction and therefore256
more accurate chirp rate extraction (than for the RSPWVD alone), as per the results in Table 1), and makes257
for ’higher’ signals (equals detecting the signal at lower SNR values (than for the RSPWVD alone), as per the258
results in Table 1), and better percent detection (than for the RSPWVD alone) due to the signal being that much259
higher than the noise floor, as per the results in Table 1). Therefore the joint sequential use of the RSPWVD260
and the HT allows for more accurate signal detection and parameter extraction of LPI radar signals than the261
RSPWVD alone, making for a more informed, effective, and safer intercept receiver environment, potentially262
saving valuable equipment, intelligence, and lives.263

5 V. Conclusions264

Digital intercept receivers, whose main job is to detect and extract parameters from low probability of intercept265
radar signals, are currently moving away from Fourier-based analysis and towards classical timefrequency266
analysis techniques (such as the WVD), and other novel analysis techniques. Though classical timefrequency267
analysis techniques are an improvement over Fourier-based analysis techniques, classical timefrequency analysis268
techniques, in particular the WVD, suffer from cross-term interference, which can make the time-frequency269
representation hard to read, especially if the components are numerous or close to each other, and the more so270
in the presence of noise. This lack of readability may equate to less accurate signal detection and parameter271
extraction metrics, potentially placing the intercept receiver signal analyst’s platform in harm’s way.272

In previous research it was shown that the reassignment method, with its squeezing and smoothing qualities,273
reduces cross-term interference of classical time-frequency distributions (i.e. WVD), and produces more localized274
(’tighter’) signals than those of the classical time-frequency distributions, making for improved readability, and275
consequently the extraction of more accurate metrics than the classical time-frequency distributions ??STE21].276

The research in this paper demonstrated that through the joint sequential use of the RSPWVD and the277
Hough Transform, the squeezing quality of the reassignment method, combined with the integration carried out278
by the Hough transform, made for ’tighter’ signals (equals more accurate theta value extraction and therefore279
more accurate chirp rate extraction (than for the RSPWVD alone), as per the results in Table 1), and made for280
’higher’ signals (equals detecting the signal at lower SNR values (than for the RSPWVD alone), as per the results281
in Table 1), and better percent detection (than for the RSPWVD alone) due to the signal being that much higher282
than the noise floor, as per the results in Table 1). Therefore the joint sequential use of the RSPWVD and the283
Hough Transform allows for more accurate signal detection and parameter extraction of LPI radar signals than284
the RSPWVD alone, making for a more informed, effective, and safer intercept receiver environment, potentially285
saving valuable equipment, intelligence, and lives.286
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5 V. CONCLUSIONS

Future plans include continuing to analyze low probability of intercept radar waveforms (such as the frequency287
hopping and the triangular modulated FMCW), using additional novel signal processing techniques, and288
comparing their results with research that has been conducted.
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