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5

Abstract6

There is an increase in interest to model driving maneuver patterns via the automatic7

unsupervised clustering of naturalistic sequential kinematic driving data. The patterns learned8

are often used in transportation research areas such as eco-driving, road safety, and intelligent9

vehicles. One such model capable of modeling these patterns is the Hierarchical Dirichlet10

Process Hidden Semi-Markov Model (HDP-HSMM), as it is often used to estimate data11

segmentation, state duration, and transition probabilities. While this model is a powerful tool12

for automatically clustering observed sequential data, the existing HDP-HSMM estimation13

suffers from an inherent tendency to overestimate the number of states. This can result in14

poor estimation, which can potentially impact impact transportation research through15

incorrect inference of driving patterns. In this paper, a new robust HDP-HSMM16

(rHDP-HSMM) method is proposed to reduce the number of redundant states and improve17

the consistency of the model?s estimation. Both a simulation study and a case study using18

naturalistic driving data are presented to demonstrate the effectiveness of the proposed19

rHDP-HSMM in identifying and inference of driving maneuver patterns.20

21

Index terms— hidden markov model, driving maneuver, dirichlet process, naturalistic driving data22

1 I. Introduction23

The analysis of vehicle driving styles is prominent to the field of intelligent transportation and vehicle calibration24
[1,2]. The term driving style can be referred as a set of dynamic activities or steps that a driver uses when25
driving. Hence, this type of research impacts eco-driving, road safety, and intelligent vehicles [3,4,5]. To model26
these driving styles, one popular approach is the use of a Hierarchical Dirichlet Process Hidden Semi-Markov27
Model (HDP-HSMM) [6]. This model is powerful in that it considers the sequential nature of driving kinematic28
signals, and estimates data segmentation, behavior state duration, and state transition probabilities. The HDP-29
HSMM provides semantical way for analyzing driver behaviors, and is thus popularly used for describing driving30
styles. Figure 1b shows an While the HDP-HSMM is powerful, literature outside of the field of transportation31
details how the model’s use of an HDP prior can lead to redundant and inconsistent state estimations. This32
detail is important as it needs to be considered by researchers attempting to utilize the HDP-HSMM to describe33
driving styles. For example, Figure 1 clearly has redundant states as seen by the green shaded states. The34
redundant states can make analysis of HDP-HSMM outputs across multiple datasets difficult for researchers35
hoping to utilize the HDP-HSMM to model driving styles. This paper addresses this issue by presenting an36
algorithm that reduces redundant states to improve consistency while still aligning to the structure of a basic37
HDP-HSMM. The presented algorithm results a more robust HDP-HSMM (rHDP-HSMM) that is expected to38
output a more consistent data segmentation, behavior state duration, and state transition probabilities than a39
basic HDP-HSMM. This will impact the transportation field in that driving maneuver patterns can be better40
grouped together for classification or behavioral studies.41

The remainder of this paper is as follows. Section 2 will provide the background about HDP-HSMM’s from42
a statistical perspective, and highlight the current set of approaches towards addressing the issues derived from43
the HDP prior. Section 3 will provide the data description and the model formulation of a basic HDP-HSMM.44
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1 I. INTRODUCTION

Section 4 discusses the details of inference for a HDP-HSMM, and how this paper’s algorithm can be included45
within the inference to produce a more robust HDP-HSMM. Section 5 presents a simulation study, in which46
the rHDP-HSMM is compared to the basic HDP-HSMM based on simulated data. Section 6 presents a case47
study that uses realistic, naturalistic driving data to compare the rHDP-HSMM with the original HDP-HSMM48
method on the basis of describing driving patterns. Finally, Section 7 summarizes new contributions and major49
conclusions of the paper.50

The HDP-HSMM was designed to improve upon the structure of a discrete state-space Hidden Markov Model51
(HMM). HMM’s are also popularly used for describing sequential data [7,8,9,10,11,12]. In particular, the HMM52
[13,14] utilizes a two-layer structure (Figure 2a) to represent sequential data observed at equally spaced time53
points. In this model, data is assumed to be generated from a set of probability distribution functions dependent54
on corresponding hidden states. The hidden states determine the data segmentation. Transitions among hidden55
states are modeled as a Markov Chain. This allows for the consideration of time sequence information during56
inference and further aids in the prediction of future states. One condition of using the Markov Chain is that57
the state duration of each hidden state is assumed to be Geometrically distributed. While the HMM is able to58
define data segmentation and state transitions, its definition of state duration is severely limited by the model’s59
structure. This limitation lead to the development of the Hierarchical Dirichlet Process Hidden Semi-Markov60
Model (HDP-HSMM) [15] which provided two key improvements to the HMM. The first improvement was the61
removal of the HMM’s assumption of geometrically distributed state duration. As the HDP-HSMM uses a Semi-62
Markovian approach to model the state transitions ?zs , this removes self-transitions from the transition matrix.63
As a consequence, this frees the geometric distribution restriction on the duration D s , which leads to a three-64
layer structure model as shown in (Figure 2b). In other words, users can choose different models for representing65
state duration, while allowing the segmentation of hidden states to be directly represented by z s .66

The second improvement was the introduction of Dirichlet Processes to the model. The Dirichlet processes67
is an extension to the Dirichlet distribution, as atoms can be sampled from it based on an input distribution.68
However, one key difference is that the Dirichlet Process assigns a probability of drawing a new atom from the69
input distribution and a separate probability of drawing an atom based on the atoms seen in previous samples.70
The resulting distribution is discrete and similar to the input distribution, but also has the possibility of having71
infinite discrete atoms if infinite samples were drawn. This phenomenon is interesting in the context of HMMs72
and HSMMs, as the Dirichlet process can be used as a prior to the state transition probability vector [16,17,15].73
Doing this allows the probability vector length (i.e. models’ number of states) to grow without limit during74
inference, which implies the Dirichlet process also acts like a prior on the number of clusters. In the HDP-75
HSMM, a Hierarchical Dirichlet Process (HDP) is used as a prior on the state transitions, which allows all the76
state transition probabilities to share a similar base distribution. This is beneficial, as all the states represented77
in the base distribution are shared between all the different state transition probabilities, while allowing each78
transition probability be dependent on the exit state. Hence, for the context of modeling of driving maneuvers,79
the HDP-HSMM is preferred as it allows greater flexibility in defining the relationship between the data and80
segmentation, state duration, and state transitions.81

While the Dirichlet Process’s clustering properties have been seen as a tool to address the model selection for82
Bayesian nonparametric approaches [18,19], the Dirichlet Process is known to have inconsistency issues regarding83
estimation of the true number of states.84

posterior does not concentrate at the true number of components, and instead introduces extra clusters even85
if they are not needed. Under the context of HMMs, [21] showed how the Dirichlet Process also leads to the86
creation of redundant states, which presents an unrealistic rapid switching between states in the inferred transition87
matrices. Under the context of HSMM’s, Figure 1 shows how this side effect occurs even in the HDP-HSMM.88
However, for the HDP-HSMM, the redundancy issue also affects the inference of transition probabilities and89
duration estimation.90

A few works exist that focus on solving this issue for HMM’s. [22] discussed HMM’s utilizing a Dirichlet91
prior, and the assumptions on the prior required for the consistency. [23] developed the sticky HDP-HMM92
(sHDP-HMM) to consider the issue of redundant states. This model adds a bias to the prior on the rows of the93
transition matrix which emphasizes self-transitions. This results in an increased state duration for each learnt94
state, which allows the sHDP-HMM to avoid redundant states with short state duration. However, this strategy95
cannot be applied to HDP-HSMM as the modeling structure of HMM’s is inherently different from HSMM’s.96
Outside of HMM and HSMM modeling, [24] focused on the Dirichlet Process Mixture model, and presented the97
Merge-Truncate-Merge algorithm, which guaranteed a consistent estimate to the number of mixture components.98
This post-processing procedure takes advantage of the fact that the posterior sample tends to produce a large99
number of atoms with small weights, and probabilistically merges atoms together.100

Given these approaches, this paper attempts to address the HDP’s inconsistency problem by taking inspiration101
from both the sticky HDP-HMM and the Merge-Truncate-Merge algorithm. The idea is to apply a merging102
procedure during inference which promotes longer durations and the avoidance of redundant states. In doing so,103
this paper’s contribution will include demonstrating how the HDP-HSMM becomes robust to the inconsistencies104
brought by the HDP prior and how this paper’s method can reduce the number of redundant states to better105
define driving maneuvers existing in Figure 1a. A brief summary, which describes where our model fits in relation106
to the other models described in HMM literature, is given in Table 1.107
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2 State Duration108

Distribution Model Extension (not sensitive to prior) Geometric HDP-HMM [14] sticky HDP-HMM [7] Any109
Discrete Distribution HDP-HSMM [15] robust HDP-HSMM (This paper) In this paper, a sequential dataset110
consists of a series of observations collected at T chronologically ordered time points. At each time point t, y t111
? R p represents the p-dimensional signal responses. The sequential data is assumed to follow multiple phases;112
there exists a partition [20] provided an example for Dirichlet Process Mixture Models which demonstrates how113
the segment, and (3) identify the probability of transitioning from one distribution to another. The challenge114
lies in little information being available relating to the number of states, the states’ durations, and the transition115
probability matrix.1 = t 1 1 ? t 1 2 ? ... ? t 1 S = T -D S ,116

3 b) Basis of HDP-HSMMs and Notations117

The HDP-HSMM accomplishes this objective with the following structure. The multivariate sequential data is118
represented by the sequence (y t ) t=1:T := {y t ? R p : t = 1, ..., T } and is assumed to transit among K119
different hidden states. The hidden states at each time point t are represented by the sequence (x t ) t=1:T :=120
{x t ? {1, 2, . . . , K} : t = 1, ..., T }, and can be further divided into S segments. Within each data segment121
s ? {1, 2, . . . , S}, all hidden states share the same index (labeled by the super-state z s ? {1, 2, . . . , K}),122
and the state duration of the segment is denoted by D s . As such, the start and end times of each segment s123
are indexed by time stamps t 1 s and t 2 s , respectively. They can be calculated as t 1 s = s<s D s and t 2 s124
= t 1 s + D s -1 where s represents all the segments before segment s. The state of segment s is assumed to be125
Markovian with a transition probability? i,j = Pr(z s = j | z s-1 = i),126

where the rows of the transition matrix are denoted as ? i = [? i,1 ? i,2 . . . ? i,K ]. However, as each state127
has a random state duration D s ? g(? zs ), the HSMM does not permit selftransitions to occur. To consider128
this, the transition rows of ? i are adjusted to ?i with each element being ?i,j =? i,j 1-? i,i (1 -? i,j ) (where ? i,j129
= 1 if i = j; ? ij = 0 otherwise).130

The relationship between the observation sequence and the segmentation described above can be seen by131
the emission distribution functions f (? zs ) and the state duration probability mass functions g(? zs ) with132
parameters ? zs and ? zs being dependent on segment s. The priors on ? zs and ? zs are denoted by H and G133
respectively.134

A Hierarchical Dirichlet Process (HDP) is used to define a prior on the rows of the transition matrix (? i )135
to learn the number of unknown states. The HDP creates a countably infinite state-space and utilizes a stick-136
breaking process ? ? Beta(?) [25] to determine the number of unknown states (K). A smaller ? (?? 0) yields137
more concentrated distributions, which plays a part in shaping the transition pattern. Each row of the Markovian138
transition probability matrix is sampled from a Dirichlet process (? i iid ? DP(?, ?)) and its similarity to the139
stick-breaking process depends on the concentration parameter ? ? (0, ?).140

The HDP-HSMM is shown in Figure 2b and can be formulated as follows:? ? Beta(?), ? i iid ? DP(?, ?) (? i141
, ? i ) iid ? H × G i = 1, 2, . . . , z s ? ?z s-1 D s ? g(? zs ) s = 1, 2, . . . , x t 1 s :t 2 s = z s , y t 1 s :t 2 s iid142
? f (? zs ) t 1 s = s<s D s t 2 s = t 1 s + D s -1.(1)143

Typically, Gibbs sampling approaches are used for statistical inference of the model parameters of the HDP-144
HSMM, which requires the full conditional distributions of the model parameters [26]. The details of the general145
Gibbs sampling procedure and how this paper applies a merging algorithm within it to create a robust HDP-146
HSMM is presented in the next section.147

IV. Proposed Robust HDP-HSMM a) Inference148
The details of the block sampling procedure presented in [15] to infer the parameters for the HDP-HSMM are149

discussed here. Additional insight regarding this paper’s proposed changes will also be included in this section.150
Assume initial values have been set for the state sequence, the emission parameters, the duration parameters,151
and the transition probabilities:(x t ) (0) , {? i } (0) , {? i } (0) , {? i } (0) .152

Step 1: The block sampling procedure begins iteration m = 1 with the sampling of the emission, duration,153
and transition distribution parameters. The distributional parameters can be sampled independently of one154
another, conditional on data assigned to each state i under the current state sequence (x t ) (m-1) . Assuming155
distributions with conjugate priors are utilized within the HDP-HSMM, this step can be simplified significantly156
into the following statement:{? i } (m) ? h ? i (? i |(x t ) (m-1) , (y t ), H, G, ?) {? i } (m) ? h ? i (? i |(x t )157
(m-1) , (y t ), H, G, ?) {? i } (m) ? h ? i (? i |(x t ) (m-1) , (y t ), H, G, ?),158

where h ? refers to the updated posterior corresponding to the conditional distribution with parameter ?.159
Step 2: Once a new set of parameters have been sampled, it is practical to apply some identifiability constraints160

to the parameters to help ensure state switching does not occur during the sampling procedure. State switching161
is a problem mentioned in literature [27,28], in which the permutation of defined states is not considered during162
the sampling procedure. Identifiability constraints ensure the order of states does not change between iterations163
of the sampling procedure, and helps ensure the posterior chain is not multimodal at the end of the sampling164
procedure. While many types of constraints can be applied, such as rearranging the states such that ? 1 < ? 2165
< ? 3 < . . . , the constraints used in this paper are be mentioned in each section directly.166

Step 3: After identifiability constraints have been applied, the new state sequence can be sampled. [15]’s167
procedure makes use of the following backwards messages:B t (i) :=p(y t+1:T |x t = i, F t = 1) = j B * t (j)p(x168
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4 ALGORITHM 1 SAMPLE A STATE SEQUENCE CONTAINING NO
REDUNDANT STATES

t+1 = j|x t = i) B * t (i) :=p(y t+1:T |x t+1 = i, F t = 1) = T -t d=1 B t+d (i)p(D t+1 = d|x t = i)p(y169
t+1:t+d |x t+1 = i, D t+1 = d) + p(D t+1 > T -t|x t+1 = i)p(y t+1:T |x t+1 = i, D t+1 > T -t) B T (i) :=1,170

where F t = 1 denotes a new segment begins at t + 1, and D t+1 denotes the duration of the segment that171
begins at time t + 1 [29]. The procedure for obtaining the posterior state sequence begins by drawing a sample172
for the first state using the following formula:p(x 1 = k|y 1:T ) ? p(x 1 = k)B * 0 (k).173

Next, a sample is drawn from the posterior duration distribution by conditioning on sampled initial state x1174
:p(D 1 = d|y 1:T , x 1 = x1 , F 0 = 1) = p(D 1 = d)p(y 1 : d|D 1 = d, x 1 = x1 , F 0 = 1)B d (x 1 ) B * 0 (x 1 )175

.176
The rest of the state sequence can be sampled assuming the new initial state has distribution p(x D 1 +1 =177

i|x 1 = x1 ) and repeating the process, until a state is assigned for all indices t = 1, . . . , T .178
Step 4: Once the new state sequence is sampled, the Gibbs sampling procedure normally returns back to179

Step 1, increments m by 1, and repeats Steps 1 to 3 until posterior convergence. However, before doing that,180
this paper propose adding an additional sampling Step 4 that removes redundant states from the posterior state181
sequence(x t ) (m) ? h (xt) ((x t )|{? i } (m) , {? i } (m) , {? i } (m) (x t ) (m) , (y t ), H, G, ?),(2)182

where h (xt) (?) represents a sampling step proposed by this paper to promote robustness.183
The proposed Step 4 is the main contribution of this paper. This section will provide the details on how184

to implement Equation 2 described in Step 4 above. The procedure is described by first defining redundancy185
between two states: Definition 4.1. In the state sequence (x t ) t=1:T , the states i and j are identified as186
redundant states if D f (? i ), f (? j ) ? ? , where ? is the decision threshold and D f (? i ), f (? j ) is a measure187
of divergence that gets larger when the distributions f (? i ) and f (? j ) are more different from one another.188

Although D f (? i ), f (? j ) can be any measure of divergence satisfying Definition 4.1, the remainder of189
the paper will assume D f (? i ), f (? j ) = ||(? i -? j )|| 2 is the â??” 2 norm of the difference in parameters.190
Now that redundancy has been defined, the details of Equation 2 can be represented by Algorithm 1. In short,191
the procedure samples a new state sequence that contains no redundant states. [15] describes a weak-limit192
approximation to the Dirichlet Process prior,?|? ? Dir(?, . . . , ?) ? j |? ? Dir(?? 1 , . . . , ?? K ), j = 1, . . . ,193
K, b) Implementation of Step 4194

as well as an augmentation that introduces auxiliary variables which are added to the ? vector to preserve195
conjugacy. This approximation eases the use of sampling procedures when dealing Dirichlet Processes [30].196
Taking this approach, the ? vector takes no consideration of redundant states, which may negatively impact the197
posterior of ? j . The presence of redundant states means the posterior transition probabilities contain extra198
transitions to and from redundant states, which dilute the underlying transition process. To counter this, h (xt)199
(?) aims to adjust the ? vector in this step as to discourage transitions to redundant states in future steps, and200
preserve the true underlying transition process.201

Algorithm 1 describes h (xt) (?) entirely. The procedure begins by initializing a new vector ?, a new state202
sequence (x t ) (m) , and taking the input of a similarity threshold ? . Taking inspiration from [24], the states203
order is firstly randomized in which redundancy is checked. This is to ensure the start of the merging procedure204
begins at a point close to the ”central mass” of the emission distribution clusters with a high probability. Going205
through the order, if the state exists within the new state sequence (x t ) (m) , the algorithm proceeds to206
find similar states based on our similarity metric and similarity threshold. Weights are then defined which will207
determine the probability of retaining a state from the set of redundant states. These weights are determined by208
the probability of other non-similar states transitioning to the state of interest and then normalized. The state209
by which to retain is selected randomly in accordance to the probabilistic weights, and the rest of the similar210
states are erased from the state sequence. Vector ? is further updated by weakening the unselected similar states211
values in the vector.212

After implementing Algorithm 1, the sampling procedure is allowed to return to Step 1. Noticeably, every213
time this step is implemented, the algorithm begins with the originally sampled ? and (x t ) (m) , but ends with214
a ? and (x t ) (m) that encourages the transition matrix in Step 1 to promote transitions to non-redundant states215
and allow larger sample sizes for216

4 Algorithm 1 Sample a State Sequence Containing No Redun-217

dant States218

Initialize ? = ?, (x t ) (m) = (x t ) (m) , and define similarity threshold ? Reorder {? i : i ? (x t ) (m) } into219
new order {? I i : i ? (x t ) (m) } using random sampling without replacement where220

? i corresponds to index the unique states existing in (x t ) (m)221
? I i corresponds to the new index of state i in the new order I = {1, 2, 3, . . . } while I is not an empty set222

do Let i correspond to the first I i appearing in the new order I Calculate D f (? i ), f (? j ) for all j ? = i where223
j ? (x t ) (m) ? Similarity metric. Define set J = {j : D f (? i ), f (? j ) ? ? } and set J ? = {j : D f (? i ), f (? j224
) > ? } for j ? J do ? j = i?J ? ? i,j ? Weights depend on transition probabilities from non-similar states. end225
for Sample j * from P(j * ) where P(j * = j) = ? j /( j ? j ) ? j * is the redundant state to keep. Update ?j =226
0.1 * ? j for all j ? J where j ? = j * ? Influence transition prior. Update xt = j * for all {t : xt ? J} ? Influence227
data used for inference. Remove I j from I for all j ? (J ? i).228
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? Prevent merging these states in future iterations. end while Output final ? and (x t ) (m) ? These will be229
used in next iteration of Gibbs sampling.230

V.231

5 Simulation Study232

In this section, simulations are used to demonstrate the advantages of the proposed rHDP-HSMM method.233
The robustness and modeling accuracy is compared with the existing HDP-HSMM method. The simulation is234
designed as follows.235

For each simulation, a sequence of observed data is generated with 30 total change points based on the236
distributions and parameters in Table 2. The emission parameters were specifically selected as they feature some237
small overlap between their distributions.238

The generated sequence begins with a state being randomly selected from the three listed in Table 2. A length239
of duration is sampled from the selected state’s duration distribution, which determines how many samples to240
draw from that state’s emission distribution. Once the emission samples are collected, they are stored in the241
sequence, and the next state is sampled according the to that state’s transition probability. The process is242
repeated 30 times to create a simulated sequence of ”observed” data. An example of a simulated dataset can243
be observed in the Figure ??. In each simulation, both the HDP-HSMM and the rHDP-HSMM are trained on244
the observed data with the same initial distributions and priors. The prior distributional forms were selected as245
to allow models to make use of conjugate relationships. Their parameters were selected as to ensure the true246
distributional parameters could be inferred with high probability. Each simulation’s initial parameter values for247
the HDP-HSMM and rHDP-HSMM were drawn according to the selected prior. The maximum number of states248
for both models was set to 20. Each state’s initial emission distribution was assumed Normal(µ, ? 2 ). The249
mean’s prior distribution was set to µ ? Normal(µ 0 = 0, ? 2 0 = 4). The variance’s prior distribution was250
set to A models had identifiability constraints implemented such as to order their states in increasing order of251
the posterior mean of their emission distribution. Furthermore, both models performed their respective Gibbs252
procedure over a maximum of 10000 iterations, or until their Gelman-Rubin statistic [31] reached less than 1.1.253
The burn-in period for both models was set to 100 iterations. Every 5th iteration of the sampled parameter chains254
was collected as to remove autocorrelation (resulting in a chain of 2000 length if convergence was not met). The255
rHDP-HSMM threshold for removing redundant states was set to 1.5. The posterior parameter values for each256
state was calculated as the mean of the most recent 20% of samples collected from the posterior parameter257
chains. The posterior sequence was selected to be the mode of the most recent 20% of samples collected from258
the posterior state sequence.259

The results of a single simulation are shown in Figures 4,5, and 6. Figure 4 compares the The simulation is260
repeated 100 times, and the results are shared in Figure ?? and Table 3. Looking at the number of estimated261
states between the HDP-HSMM and the rHDP-HSMM, it is clear that the rHDP-HSMM’s inference procedure262
removes states that would be otherwise present in a standard HDP-HSMM (Figure ??). In fact, 80 of the 100263
simulations resulted in the rHDP-HSMM correctly inferring the true number of states. Furthermore, Table 3264
shows that the rHDP-HSMM converged on average with fewer iterations than the HDP-HSMM. This table also265
shows that while both models are able to correctly capture all the true change points, the standard HDP-HSMM266
tends to estimate many more change points than the rHDP-HSMM. This is due to the redundancy issue, which the267
rHDP-HSMM eliminates through its modified inference procedure. The benefit of the proposed rHDP-HSMM268
is demonstrated via the real-world application of modeling vehicle driving maneuver patterns. This type of269
modeling is useful for the development intelligent driving assistant systems and autonomous driving vehicles.270
The dataset analyzed in this study was collected by University of Michigan’s Transportation Research Institute271
[32]. Several kinematic driving signals were collected from human-driven vehicles during their everyday activities.272
This naturalistic dataset is rich with information related to discover common driving maneuvers and behaviors.273
[1]. Signals are recorded on trip by trip basis, which begins when the vehicle is turned-on and ends when the274
vehicle is turned-off. An example of a trip can be seen in Figure 8.275

The kinematic signals of interest are acceleration, lane offset, and yaw rate. Acceleration and lane offset reflect276
a driver’s intention of moving in the longitudinal and lateral directions respectively. Yaw rate captures a driver’s277
intention of of changing the forward direction of the car. Together, they form a multivariate time-series sampled278
at 10 Hz which should be highly correlated with human-driving behaviors. An example of the collected signals279
is The colors in Figure 8 represent the labeling results after training the 0.5 threshold rHDP-HSMM. Noticeably,280
the rHDP-HSMM segments the road into 9 states. Looking deeper at Figure 8b, it is clear that each state281
is primarily dictated by changes in yaw rate. Hence this model is able to capture portions of the road where282
various turning maneuvers are intended by the driver (Figure 8a). Comparing Figure 8a with the HDP-HSMM283
segmentation shown in Figure 1a, it is clear how the rHDP-HSMM merged the HDP-HSMM’s 17 states into a284
more clear representation of maneuvers used on the road.285

The rHDP-HSMM and HDP-HSMM are further compared in Figure 9 by using states obtained from the curved286
portion of the road marked in Figure 8a. Six other trips existed where the same driver drove on that part of the287
road. Hence, both the HDP-HSMM and the rHDP-HSMM are trained again on each of the other trips under288
the same initial parameters. The learned states from each model which occurred on the marked portion are289
analyzed in Figure 9. Figures 9a and9b shows the emission means and durations learned by the HDP-HSMM and290
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7 HIGHLIGHTS

the rHDP-HSMM respectively. Interestingly, Figure 9b shows how the rHDP-HSMM concentrates the emission291
means in various quadrants of the graph. These quadrants relay a positive yaw rate, a negative lane offset,292
and a positive acceleration in all the learnt means. The concentration of these means in each quadrant indicate293
a consistency in maneuvers among the various trips, which translates to a left turning action intended by the294
driver. This same conclusion is not easily recognizable in Figure 9a, as the HDP-HSMM loses this consistency in295
the learnt means. The difference in learning procedure between the HDP-HSMM and the rHDP-HSMM suggests296
that the HDP-HSMM’s lack of concentrated means derives from the HDP-HSMM overestimating the number of297
states. As the rHDP-HSMM inference procedure merges similar states together, the emission means of each state298
can be inferred with a greater amount of data, providing both more consistent estimates and more consistent299
conclusions.300

The HDP-HSMM is a powerful model for discovering driving maneuver patterns from kinematic driving data.301
This paper details an extension to the HDP-HSMM in which this paper refers to as a robust HDP-HSMM (rHDP-302
HSMM). This model provides a solution to the inconsistency problem caused by the HDP prior. Looking through303
the lens of a weak-limit 9a shows the means from the original HDP-HSMM, while Figure 9b shows the means304
from the proposed rHDP-HSMM305

6 VII. Discussion and Conclusion306

approximation of the HDP prior, the problem typically occurs as the Dirichlet distribution takes no consideration307
for redundant states, which dilutes the underlying transition process. The rHDP-HSMM solves this issue by308
adjusting the sample from Dirichlet distribution by checking which states can be merged together. The model309
then scales down the weights which encourage transitions to redundant states. As a result, the rHDP-HSMM310
learns fewer redundant states and estimates longer state durations when compared to the original HDP-HSMM.311
This change leads to improved segmentation and more accurate transition probability representation, which is312
useful for the application of learning driving maneuvers.313

Two case studies are presented to further demonstrate the ability of the proposed rHDP-HSMM over the314
HDP-HSMM. The first study is a simulation which utilizes 1-dimensional normal distributions for the emission315
function. The rHDP-HSMM demonstrates a clear improvement with regards to the posterior chains. The emission316
parameters converge much faster, the duration posteriors have far less variance than the HDP-HSMM’s duration317
posterior, and finally the posterior state sequence presents far less change points than the HDP-HSMM’s. Over318
the course of 100 simulations, the rHDP-HSMM out performs the HDP-HSMM in terms of convergence and319
having less extra change points relative to the truth.320

The second study demonstrates of the effectiveness of the model in identifying and inferring driving maneuver321
patterns from a naturalistic dataset of kinematic signals. It is shown how the rHDP-HSMM’s merging procedure322
reduces the number of states to describe a trip from 17 to 9 states when compared to a regular HDP-HSMM. The323
states are highly interpretable and now specifically capture portions of the road where various turning maneuvers324
are intended by the driver. In addition to this, the study also compares the results from multiple trips occurring325
on a curved portion of the road. The results show how the rHDP-HSMM consistently estimates similar emission326
distributions from multiple trips when compared to the original HDP-HSMM estimates.327

In both studies, the rHDP-HSMM outperforms the HDP-HSMM in terms of estimation and consistency. This328
paper concludes that the rHDP-HSMM is worth applying to datasets where an HDP prior may be generating329
redundant states. Further inspection as to how to select the threshold may be required, however it is clear that330
the merging procedure within the model is still able to learn consistent and highly interpretable states for the331
study of driving maneuvers.332

7 Highlights333

? A robust HDP-HSMM is proposed which produces more consistent results than the HDP-HSMM ? An algorithm334
is described as to combat the inconsistency issues that arise from using an HDP prior ? A simulation study is335
performed to show the impact of the proposed robust HDP-HSMM versus the basic HDP-HSMM in terms of336
parameter convergence and data segmentation ? Real kinematic data is used to further compare robust HDP-337
HSMM and the basic HDP-HSMM in terms of learned maneuver patterns. 1 2338
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Emission Duration Transition
Distribution Normal Poisson N/A
Parameter(s) Mean Variance Rate State 1 State 2 State 3
State 1 4 1 6 0 0.3 0.7
State 2 0 1 6 0.8 0 0.2
State 3 -4 1 6 0.4 0.6 0

Figure 14: Table 2 :
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