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6

Abstract7

It has recently been proposed by the author of the present work that the periodic NS8

equations (PNS) with high energy assumption can breakdown in finite time but with sufficient9

low energy scaling the equations may not exhibit finite time blowup. This article gives a10

general model using specific periodic special functions, that is degenerate elliptic Weierstrass11

P functions whose presence in the governing equations through the forcing terms simplify the12

PNS equations at the centers of cells of the 3-Torus. Satisfying a divergence free vector field13

and periodic boundary conditions respectively with a general spatio-temporal forcing term f14

which is smooth and spatially periodic, the existence of solutions which blowup in finite time15

for PNS can occur starting with the first derivative and higher with respect to time. P. Isett16

(2016) has shown that the conservation of energy fails for the 3D incompressible Euler flows17

with Ho ?lder regularity below 1/3. (Onsager?s second conjecture) The endpoint regularity in18

Onsager?s conjecture is addressed, and it is found that conservation of energy occurs when the19

Ho ?lder regularity is exactly 1/3. The endpoint regularity problem has important connections20

with turbulence theory. Finally very recent developed new governing equations of fluid21

mechanics are proposed to have no finite time singularities.22

23

Index terms—24

1 I. Introduction to the Periodic Navier Stokes Equations25

he Navier-Stokes equations are useful because they describe the physics of many phenomena of scientific and26
engineering interest. They may be used to model the weather, ocean currents, pipe flows and heat exchangers27
and air flow around a wing. The Navier-Stokes equations, in their full and simplified forms, help with the28
design of aircraft and automobiles, hemodynamics, the design of power stations, the analysis of pollution and29
fuel emissions and many other things.30

In 1845, Stokes had derived the equation of motion of a viscous flow by adding Newtonian viscous terms31
and finalized the Navier-Stokes equations, which have now been used for almost two centuries. There are only32
a few studies to find how to understand the physical meaning of the viscous terms in NS equations. As is33
well known, Stokes had three assumptions: 1. The force on fluids is the stationary pressure when the flow34
is stationary. 2. Fluid viscosity is isotropic. 3. Fluid flow follows Newton’s law that fluid stress and strain35
have linear relations. These assumptions lead to the NSE. In [1], since the regular NS equations are quite36
demanding in computational time and resources the vorticity part is considered as the only source of fluid stress37
for the purpose of computation cost reduction. In fact, fluid shear stress is contributed by both strain and38
vorticity. In mathematics, the computation of stress can be performed by strain only, vorticity only, or both.39
The computational results are exactly the same. The NSE equation adopts strain, which is symmetric and stress40
based on Stokes’s assumption. In [1], a new governing equation which is based on a new assumption that accepts41
that fluid stress has a linear relation with vorticity, which is anti-symmetric. According to the mathematical42
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3 II. MATERIALS AND METHODS

analysis, the new governing equation is identical to NS equations in numerical analysis, but in a physical sense,43
the new governing equation is just the opposite to NSEs as it assumes that fluid stress is proportional to vorticity,44
where both are anti-symmetric, but not strain, contrary to Stokes’s assumption and the current NSE.45

Although both NSEs and the new governing equation in [1] lead to the same computational results for laminar46
flow, the new governing equation has several advantages: 1. The vorticity tensor is anti-symmetric, which has47
three elements, but NSEs use the strain tensor, which has six elements. It is shown that the computational cost48
is reduced to half for the viscous term. 2. The anti-symmetric matrix is independent of the coordinate system49
change or Galilean invariant, but the symmetric matrix that NSE uses is not. 3. The physical meaning is clear50
that the viscous term is generated by vorticity, not by strain only. 4. The viscosity is obtained by experiments,51
which are based on vorticity but not strain, since both strain and stress are hard to measure experimentally.52
5. Vorticity can be further decomposed to rigid rotation and pure anti-symmetric shear, which is very useful53
for further study turbulent flow. However, the NS equation has no vorticity term, which is an impediment for54
further turbulence research. ??ref [27] in [1]] studied the mechanism of turbulence generation and concluded that55
shear instability and transformation from shear to rotation are the paths of flow transition from laminar flow to56
turbulent flow. Using Liutex and the third generation of vortex identification methods, a lot of new physics has57
been found (see Dong et al., ??iu et [1]) In Ref.28 in [1], Zhou et al. elaborated the hydrodynamic instability58
induced turbulent mixing in wide areas, including inertial confinement fusion, supernovae, and their transition59
criteria. Since the new governing equation has a vorticity term, which can be further decomposed to shear60
and rigid rotation, the new governing equation would be helpful in studying flow instability and transition to61
turbulence. Turbulence is rotational and characterized by large fluctuations in vorticity and thus it is important62
to accurately define vorticity. In the vorticity equation the vortex stretching term can be argued to be one of the63
most important mechanisms in the turbulence dynamics. It represents the enhancement of vorticity by stretching64
and is the mechanism by which the turbulent energy is transferred to smaller scales.65

The purpose of this article is to refer to the periodic NS equations with high energy assumption as in the case66
of the continuum hypothesis being valid and can breakdown in finite time but with sufficient low energy scaling67
as in a fractal setting like for example on a Cantor set, the equations may not exhibit finite time blowup. It is68
known recently in the literature that the Cantor set with layers N (N can have up to two orders of magnitude)69
can be presented as a potential contender (analytical framework) for connecting the energy in a molecular level70
say ?? 1 at some cutoff length scale ?? ?????? to the energy at a continuum level ?? ?? with length scale L.71
The equipartition theorem of statistical mechanics has been used (Terrence Tao 2015) to relate the energy of a72
discrete block in say ?? 1 (molecular scale) to the energy in ?? ?? (continuum scale). Additionally it has been73
shown that the ratio of the energy of the continuum scale to the molecular scale is a factor of 2^N. It then makes74
intuitive sense that the high energy PNS problem may breakdown in finite time. This article gives a general75
model using specific periodic special functions, that is degenerate elliptic Weierstrass P functions. See Figure 1.76

The definition of vorticity should be as defined in [1], which is that vorticity is a rotational part added to the77
sum of antisymmetric shear and compression and stretching. A vortex is recognized as the rotational motion of78
fluids. Within the last several decades, a lot of vortex identification methods have been developed to track the79
vortical structure in a fluid flow; however, we still lack unambiguous and universally accepted vortex identification80
criteria. It has been uncovered that the regions of strong vorticity and actual vortices are weakly related. It81
recently [1] has been concluded that a vorticity vector does not only represent rotation but also claims shearing82
and stretching components to be a part of the vortical structure, which is contaminated by shears in fluid.83
Satisfying a divergence free vector field and periodic boundary conditions respectively with a general spatio-84
temporal forcing term ð�??”ð�??”(??, ??)) which is smooth and spatially periodic, the existence of solutions of85
PNS which blowup in finite time can occur starting with the first derivative and higher with respect to time. On86
the other hand if ?? 0 is not smooth, then there exist globally in time solutions on ?? ? [0, ?) with a possible87
blowup at ?? = ?. The control of turbulence is88
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3 II. Materials and Methods91

Consider the incompressible 3D Navier Stokes equations defined on the three-Torus ?? 3 = ? 3 ? 3 ? . The92
periodic Navier Stokes system is,(P????) ? ? ?? ?? -Î?”?? + ?? ? ??? = -??? + ð�??”ð�??” div ?? = 0 ?? ??=093
= ?? 0 .94

where ?? = ??(??, ??, ??, ??) is velocity, ?? = ??(??, ??, ??, ??) is pressure and ð�??”ð�??” = ð�??”ð�??”(??,95
??, ??, ??) is forcing vector. Here ?? = ??? ?? , ?? ?? , ?? ?? ?, where ?? ?? , ?? ?? , and ?? ?? denote96
respectively the ??, ?? and ?? components of velocity.97

Introducing Poisson’s Equation (see [2], [3] and [5]), the second derivative ?? ???? is set equal to the second98
derivative obtained in the ?? ??1 expression further below, as part of ??, and ?? ???? = ?? -1 ?? ?? ?? * , ??99
???? = ?? -2 ?? ???? * . Furthermore the right hand side of the one parameter group of transformations are100
next mapped to ?? variable terms, (note that ?? and ?? are not assumed to be arbitrarily small, they can be at101
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most order one),?? ???? = -2?? ?? ??? ?? * = 1 ?? ?? ?? , ?? * = 1 ?? 2 ??, ?? ?? * = ???? ?? , ?? * = ?? 2102
??, ?? = 1,2,3.103

The double transformation is used for notational clarity. Note that the original Navier Stokes equations are104
preserved and simply rearranged in the following forms and Navier Stokes Equations become,??(??) = ??(??)105
??1 + ??(??) ??2 + ??(??) ??3 + ??(??) ??4 = 0 where ??(??) ??2 = ?? 3 ?? 6 ? ??? 3 ??? 3 ? ??? 3 ??? + (??106
3 ) 2 ?? 6 ? 2 ?? 3 ??? 3 ??? + 2 ? ??? 1 ??? ? ?? 3 ??? 3 ??? 1 + 2 ? ??? 2 ??? ? ?? 3 ??? 3 ??? 2 + 2 ? ???107
3 ??? ? ?? 3 ??? 3 ??? 3 ???? 6 ??(??) ??3 = 1 ?? 3 × ?? ?? ? 1 ???? ?? 3 2 ? ?? 1 ?? 2 ?? + 1 ?? ?? ? 1 ??108
?? 3 ??? ??? 3 ? ? ?? ?????? -? ? ? ? ? ??? 3 ??? ?? ? ? ? ??? ? ? ? ??? 3 ? ? ? ? ? ?? ? ? ? ?????109

possible to maintain when the initial conditions and boundary conditions are posed properly for (PNS) (110
[5]). The endpoint regularity in Onsager’s conjecture is addressed, and it is found that conservation of energy111
occurs when the Hð�?”¬ð�?”¬?lder regularity is exactly 1/3. Finally it is proposed that the periodic Liutex new112
equations [1] (The new equations referred to previously) do not exhibit finite time blow up. This is the focus of113
the ongoing work of the author to be presented in the near future. Year 2023 ( ) I??(??) ??1 = 1 ?? 6 ? ? ? ? ?114
? ? (?? -1 -1) ? ??? 3 ??? ? 2 + ?? ? ??? 3 ??? ? ? ? 2 ?? 3 ??? 1 2 + ? 2 ?? 3 ??? 2 2 + ? 2 ?? 3 ??? 3 2 ?115
?? + (?? -1 -1) ? ??? 3 ??? ? ??? ??? 3 ?? ? ? ? ? ? ? ? (1 -? -1 ) ??(??) ??4 = 1 ?? 3 ??? 2 ?? ?? ????? ? ?116
?? 1 ?? 2 ?? 3 2 -?? 3 ?? 3 ??? 3 ??? 3 ?? ?? + ?? 2 ?? ? ? ?(?? 3 ?? ?? )?117

It has been shown in Moschandreou et al [5] that this decomposition holds and that,??(??) ??1 + ??(??) ??2118
+ ??(??) ??4 = 3 ?(??)119

The function ?(??) is the surface integral of pressure terms minus the volume integral of tensor product term.120
At the end of this paper, a proof that on a volume of an arbitrarily small sphere embedded in each cell of the121

lattice centered at (?? ?? , ?? ?? , ?? ?? ) (centers of cells) we have,??(??) ??1 + ??(??) ??2 + ??(??) ??4 = 0122
From this equation we then can solve for ??? ??? 3 algebraically and differentiating with respect to ?? 3 and123

using Poisson’s equation (setting the representation of each of the two partial derivatives with respect to ?? 3124
equal to each other we obtain, ?? = 0, which is precisely the following PDE, ?? = ? ??? 3 ??? ? 2 ??(?? -1) ? 3125
?? 3 ??? 3 ??? 1 2 + ? ??? 3 ??? ? 2 ??(?? -1) ? 3 ?? 3 ??? 3 ??? 2 2 + ? ??? 3 ??? ? 2 ??(?? -1) ? 3 ?? 3 ???126
3 3 + ? ??? 3 ??? ? (?? 3 ) 2 ? ? 3 ?? 3 ??? 3 2 ??? ? ???? -(?? 3 ) 2 ? ? 2 ?? 3 ??? 3 ??? ? 2 ???? - 2?? ??127
?? 2 - 1 2 ? ? ??? 3 ??? ? 2 -?? 3 ? ??? 3 ??? ? ? ??? 3 ??? 3 ? ?? + ??? 3 ??? ?? 1 (?? 1 , ?? 2 , ?? 3 , ??)128
+ ??? 1 ??? ? ??? 3 ??? 1 + ?? 3 ??? ?? 2 (?? 1 , ?? 2 , ?? 3 , ??) + ??? 2 ??? ? ??? 3 ??? 2 + ?(?? 1 , ?? 2 ,129
?? 3 , ??) 2 + ?(s) 2 ? ??? ? 2 ?? 3 ??? 3 ??? + ??(?? -1)(???? 1 (?? 1 , ?? 2 , ?? 3 , ??) -1) ??? 3 ??? + 2??130
3 ???? ??? ?? 1 (?? 1 , ?? 2 , ?? 3 , ??) + ??? 1 ??? ?? ? 2 ?? 3 ??? 3 ??? 1 + ?(?? -1)(?? 2 (?? 1 , ?? 2 , ??131
3 , ??)?? -1) ??? 3 ??? + 2?? 3 ???? ??? ?? 2 (?? 1 , ?? 2 , ?? 3 , ??) + ??? 2 ??? ?? ? 2 ?? 3 ??? 3 ??? 2 +132
3?? 3 ?- 2 3 + ??? + 2 3 ? ??? ? ??? 3 ??? ? ? 2 ?? 3 ??? 3 2 + 2?? 3 ? ??? 3 ??? ? (?? -1) ? 2 ?? 3 ??? 1 2133
+ 2?? 3 ? ??? 3 ??? ? (?? -1) ? 2 ?? 3 ??? 2 2 + ?(-1 + (3?? + 1)??) ? ??? 3 ??? 3 ? 2 + (?? -1) ?? ??? 1 ???134
1 ? 2 + 2 ? ??? 1 ??? 2 ? ??? 2 ??? 1 + ? ??? 2 ??? 2 ? 2 ?? ??? 3 ??? + 2?? ????? ?? 1 (?? 1 , ?? 2 , ?? 3 ,135
??) + ??? 1 ??? ? ??? 3 ??? 1 + ? ??? 3 ??? 2 ? ??? ?? 2 (?? 1 , ?? 2 , ?? 3 , ??) + ??? 2 ??? ?? ??? 3 ??? 3136
+ ?? 3 ? ??? 3 ??? 1 ? ??? ?? 1 ??? 3 + ?? 3 ? ??? 3 ??? 2 ? ??? ?? 2 ??? 3 + 1 2 ??(?? 1 , ?? 2 , ?? 3 , ??)137
??? 3 ? ??? ??? 3 ??? = 0(1)2 ? ? 2 ?? 1 ??? 3 ??? ? ?? 3 ? ??? 3 ??? 1 ? ???? + 2 ? ? 2 ?? 2 ??? 3 ??? ? ??138
3 ? ??? 3 ??? 2 ? ???? + and ?(?? 1 , ?? 2 , ?? 3 , ??) is given as, ?(?? 1 , ?? 2 , ?? 3 , ??) = 2 ð�??”ð�??” 0139
(??)??(?? 1 , ?? 2 , ?? 3 )?? 3 (?? 1 , ?? 2 , ?? 3 , ??) ??? 3 ??? 1 ?? + 2 ð�??”ð�??” 0 (??)??(?? 1 , ?? 2 , ?? 3140
)?? 3 (?? 1 , ?? 2 , ?? 3 , ??) ??? 3 ??? 2 ?? - ?? 3 ?? 3 ? ??? 3 ??? 3 ? ?? ???? (?? 1 , ?? 2 , ?? 3 , ??) + ??141
2 ?? ??? 3 ??? 3 ? ?? ???? (?? 1 , ?? 2 , ?? 3 , ??) + ?? 3 ??? ???? ??? 3 ?142

where ð�??”ð�??” ? = ??? ?? 1 , , ?? ?? 2 , ?? ???? ? is the forcing vector and ?? ? = (?? 1 , ?? 2 , ?? 3 ) is143
the velocity in each cell of the 3-Torus.144

For the three forcing terms, set them equal to products of reciprocals of degenerate Weierstrass P functions145
shifted in spatial coordinates from the center (?? ?? , ?? ?? , ?? ?? ),?? = 1. . ??.146

Here the (?? ?? , ?? ?? , ?? ?? ) is the center of each cell of the lattice belonging to the flat torus. Upon147
substituting the Weierstrass P functions and their reciprocals (unity divided by P-function) into Eq.( 1) together148
with the forcing terms given by ?, it can be observed that in the equation that terms in it are multiplied by149
reciprocal Weierstrass P functions which touch the centers of the cells of the lattice, thus simplifying Eq.( 1).150
The initial condition in ?? 3 at ?? = 0 is instead of a product of reciprocal degenerate Weierstrass P functions151
for forcing, is a sum of these functions. The parameter ?? in the degenerate Weierstrass P function, if chosen to152
be small gives a ball,?? ?? = {?? ? ? 3 : ?|??|? 2 = (|?? 1 | 2 + |?? 2 | 2 + |?? 3 | 2 ) 1 2 ? ??}153

Here we are in Cartesian space ? 3 with 2-norm ?? 2 . Since the terms are squared in length in the initial154
condition for ?? 3 we require to multiply by dynamic viscosity ?? to obtain units of velocity. In the above, the155
forcing is taken to be different than the gradient of pressure.156

Introducing the space?(?? 3 , ??) = ??? ? ? + , ?? 3 ? ?? ??? 3 ?? ?? ; ??? : 2?? 1 ?? 1 + ?? 2 = 0 &????157
1 + ???? 2 + ?? = 0, ??? 1 , ?? 2 ? ?? × ?? (?? ? ? )&?? 2 = ?? 1 2 & ?? 3 (?? 1 , ?? 2 , ?? 3 , ??) ? ?? 0158
(?? 3 )?,159

where ?? ??? ?? = ?(?? -1)?? 1 ???? 3 ???? + 2???? 3 ???? 1 ???? ? ?? 2 ?? 3 ???? 3 ???? 1 + ?(?? -1)??160
2 ???? 3 ???? + 2???? 3 ???? 2 ???? ? ?? 2 ?? 3 ???? 3 ???? 2 - ???? 3 ???? ??? 3 ???? 3 ???? 1 ?? 2 ?? 1161
???? 3 ???? + ?? 3 ???? 3 ???? 2 ?? 2 ?? 2 ???? 3 ???? - ???? 3 ???? 1 ???? 3 ???? 3 ???? 1 ???? - ???? 3162
???? 2 ???? 3 ???? 3 ???? 2 ???? ? + ?? 3 ???? 3 ???? 1 ???? 1 ???? ?? 2 ?? 3 ???????? 3 2 ?? = ?(?? -1) ??163
1 ???? 3 ???? + 2???? 3 ???? 1 ???? ? ?? 2 ?? 3 ???? 3 ???? 1 + ?(?? -1) ?? 2 ???? 3 ???? + 2???? 3 ???? 2164
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3 II. MATERIALS AND METHODS

???? ? ?? 2 ?? 3 ???? 3 ???? 2 + ???? 3 ???? ? ???? 3 ???? 1 ???? 3 ???? 3 ???? 1 ???? + ???? 3 ???? 2 ????165
3 ???? 3 ???? 2 ???? ? + ? ???? 2 ???? ? 2 ?? 3 ???? 3 ???? 2 ? ???? 3 ???? ???? 2 ???? ? ?? 3 +? ???? 1166
???? ? 2 ?? 3 ???? 3 ???? 1 ? ???? 3 ???? ???? 1 ???? ? ?? 3167

Next the sum of the two first vorticities is used together with the vorticity sum set to the sum of the first two168
components of the equivalent expression which is twice the angular velocity,ð�??”ð�??” 1 + ð�??”ð�??” 2 = 2?? 2169
?? 3 -2?? 1 ?? 3 -2?? 3 (?? 2 -?? 1 ) ?? 1 2 + ?? 2 2 + ?? 3 2170

Thus using the definition of vorticity we have the following equation in the space ?(?? 3 , ??),171
The ?? 3 points are along segments parallel to the ?? 3 -axis, throughout the lattice. For points belonging to172

the space ?(?? 3 , ??), the following part of Eq.( 1) is exactly zero:173
That is ?? = 0 on the subspace ?(?? 3 , ??). ?? 1 , ?? 2 are linearly dependent in this space. In the second174

equivalent expression for ??, in the space ?(?? 3 , ??), ?? = 0. Year 2023 ( ) I+ ?? 3 ???? 3 ???? 2 ???? 2 ????175
?? 2 ?? 3 ???????? 3 ???? 3 ???? 1 - ???? 3 ???? 2 = ???? 1 ???? 3 - ???? 2 ???? 3 -(ð�??”ð�??” 1 + ð�??”ð�??”176
2 )177

Multiplying both sides of this equation by ?? 1 2 + ?? 2 2 + ?? 3 2 = ?? 2 and letting ?? approach zero178
gives,2?? 2 ?? 3 -2?? 1 ?? 3 -2?? 3 (?? 2 -?? 1 ) = 0 so ?? 3 = - ?? 3 (?? 2 -?? 1 ) ?? 1 -?? 2179

Introduce the following shifts, (?? 1 -?? 1 , ?? 2 -?? 2 , ?? 3 -?? 3 ) ranging over all the centers of cells in the180
expanding lattice, and we set:?? 3 -?? 3 =(?? 1 -?? 1 ) -(?? 2 -?? 2 )181

Cancellation occurs between ?? 3 and ?? 1 -?? 2 terms leaving us with,?? 3 = -(?? 2 -?? 1 )182
Here we see clearly that we have an isotropic condition on the finite time blowup of the velocities. If the first183

derivatives and higher of the third component of velocity blows up then so do the corresponding derivatives of ??184
1 and ?? 2 respectively. The third component of vorticity is calculated as twice the third component of angular185
velocity,?2 (?? ? × ?? ?) ?? 3 ?? 1 2 + ?? 2 2 + ?? 3 2 ? = 2 -?? 1 ?? 2 + ?? 2 ?? 1 ?? 1 2 + ?? 2 2 + ?? 3 2186
ð�??”ð�??” 3 = ???? 1 ???? 2 - ???? 2 ???? 1 = 2 -?? 1 ?? 2 + ?? 2 ?? 1 ?? 1 2 + ?? 2 2 + ?? 3 2 Substitute ??187
2 = -2?? 1 ?? 1 into previous PDE, ???? 1 ???? 2 + 2?? 1 + 2?? 1 ???? 1 ???? 1 = 2 (-2?? 1 2 -?? 2 ) ?? 2 ?? 1188

where the sphere of radius ?? is introduced, at the center of each cell of the lattice.189
Solving PDE, gives, for arbitrary function ?? 1 ,?? 1 = ?? 1 -1- - ???? (?? 1 ) 2 +?? 2 ?? 2 ?? 1 ? -ln (?? 1190

) 2 + ?? 2 , ?? 3 , ??? ?? - ?? 1 2 ?? 2 ?? - ln (?? 1 ) 2 4?? 2191
A particular maximal class of solutions is obtained by setting, which is in the required form of the general192

function and where ð�??”ð�??” is an arbitrary function to be determined. Back substituting ?? 1 into the solution193
for ?? 1 , gives,?? 1 = ?? -2?? 2 ?? 2 -?? 1 2 -?? 2 2 ?? 2194

ð�??”ð�??”(?? 3 , ??)Here ?? 1 is Gaussian. Substituting ?? 1 into ?? 2 = -2?? 1 ?? 1 , gives, ?? 2 = -2?? 1195
?? -2?? 2 ?? 2 -?? 1 2 -?? 2 2 ?? 2 ð�??”ð�??”(?? 3 , ??)196

which is double sided Gaussian.197
Near the center of each cell of the lattice, the solutions are non singular in spatial variables.198
However ð�??”ð�??”(?? 3 , ??), is yet to be determined and related to ?? 3 solution since ?? 3 = -(?? 2 -??199

1 ). Now the general form was reduced to a particular maximal class of solutions since as ?? 1 ? 0 ,?? 1 ? 0,200
which is inadmissible according to a theorem of J.Y Chemin [6] (”Some remarks about the possible blowup for201
the Navier Stokes equations”) If there is finite time blowup then it is impossible for one component of velocity202
to approach zero ?? 1 = ?? ln (?? 1 )-2?? 2 ?? ? ln(?? 1 ) 2?? ? - ?? 2 ?? ? ? 2 ð�??”ð�??”(?? 3 , ??)203

too fast. So we will show further that ?? 3 is not smooth. Thus ?? 1 , ?? 2 blow up at the center of cells of204
lattice if we can conclude that ??(??) = lim ?? 3 ?0 ð�??”ð�??”(?? 3 , ??) has finite time blowup. Again recall205
that ?? 3 = -(?? 2 -?? 1 ), where in ?(?? 3 , ??)?? 3 = -(-2?? 1 ?? 1 -?? 1 ) = (2?? 1 + 1)?? 1 ? 0 at the206
centers of cells of ? 3 ? 3 ? since 2?? 1 + 1 ? 0 there and ?? 1 is also not zero there.207

Define ??(??) = ð�??”ð�??”(0, ??) = ? ??(??) ????, where ð�??”ð�??”(0, ??) = lim ?? 3 ?0 ð�??”ð�??”(?? 3 ,208
??) and ??(??) is the solution associated with ?? 3 in the ?? -ball as ?? ? 0.- ???? ???? 2 + ð�??”ð�??” 2 = ?-2209
1 ?? ?? 1 1 ?? ?? 2 1 ?? ?? 3 -2? ??(??)210

The pressure gradient is oscillatory, that is it is written as a product of reciprocals of degenerate Weierstrass211
P functions added to a constant as is the forcing.212

Finally the surface S given by ?? 3 = ±(???? 1 2 + ???? 1 + ??), plotted in ? 3 is such that by shifting and213
sweeping through ?? 1 values and heights along ?? 3 axis we can find intersection points between surface S and214
points or centers of cells (?? ?? , ?? ?? , ?? ?? ).215

Equation ( 1) together with ?? = 0 gives the following PDE which has viscosity in it and where in Eq.( ??.21)216
we have condensed the PDE by collecting the terms that contribute to the Laplacian. Also the divergence theorem217
is applied to the volume integral of Eq(I) for the term with Laplacian multiplied by ?? 3 . The calculations are218
taking into account that density is large, (fluids like water and higher densities.)? ? 3 ?? 3 ??? 3 3 + ? 3 ?? 3219
??? 3 ??? 2 2 + ? 3 ?? 3 ??? 3 ??? 1 2 ? ?? + 2/3(?? 3 ? ? 2 ?? 3 ??? 3 2 + ? 2 ?? 3 ??? 2 2 + ? 2 ?? 3 ???220
1 2 ? + 1/6 ?3???? 3 ? 2 ?? 3 ??? 3 2 + 3 ? ??? 3 ??? 3 ? 2 ?? -? ??? 3 ??? 3 ? 2 + ? 2 ?? 3 ??? 3 ??? 1 + ?221
2 ?? 3 ??? 3 ??? 2 ? ??? 3 ??? = 0 (I)222

Finally the solutions for ?? 1 , ?? 2 satisfy the ?? 1 , ?? 2 momentum equations for PNS when- ???? ???? 1223
+ ð�??”ð�??” 1 = ? 1 ?? ?? 1 1 ?? ?? 2 1 ?? ?? 3 + 1? ??(??),224

for ?? > 0 arbitrarily small and where ð�??”ð�??” In Equation (I) it is understood that in the top line with225
two expressions appearing there, that these both include a product of (?? -1)? ??? 3 ??? ? 2226

which has been set to a constant. Solving this implies that ?? 3 is a linear function in ??. As ?? ? 1, ?? 3227
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approaches infinity from the right of a potential blowup point ?? = ?? 0 . See Figure (1c) below, Equation (I)228
is confirmed to provide the left hand limit at ?? = ?? 0 . We have two problems here. One is the solution for229
the Euler equation when ?? = 0. The solution is obtained by solving for one of the constants ?? 6 . There are230
six unknown constants in the solution of the above PDE when ?? = 0. (?? ?? , ?? = 1,2, ? 6) We use the fact231
that in the space ?(?? 3 , ??), the set {1,?? 1 , ?? 1 2 } is linearly independent, implying that all the constants232
are zero in the solution except ?? 3 and ?? 4 associated with variables ?? 3 , ?? respectively. The solution is233
expressed as linear sums of the spatial and time variables. Now ?? 3 is within an epsilon ball. The variable ??234
appears in the initial condition when solving for the unknown constant ?? 6 , and the initial condition for ?? 3235
is given as the sum of arbitrarily large data ?? and sums of reciprocal degenerate Weierstrass P functions in the236
three directions for small ??. We obtain the following solution, ? $ = ln -6? $ S ? : ? -6? S S ? : ? -6? where ??237
is the Lambert W function. We replaced ?? by -??+large shifts and found that the solution for ?? 3 for large ??238
(example ?? = 600), the solution is locally Hð�?”¬ð�?”¬lder continuous with H??lder constant 1/3 at arbitrary239
large values of ??.240

(specifically in plot shown, ?? = 10000).241
In this analysis there is no restriction on the largeness of the data, thereby proving that the solution is242

admissible for arbitrary large data. The solution as seen in Figure 2 is not smooth from the first and higher243
derivatives in of ??. This is discussed further in the chapter as it pertains to the Onsager regularity problem244
particularly the endpoint regularity problem.245

See the following Figure 2, where the dashed line is the solution for ?? 3 and the non-dashed line is the246
Hð�?”¬ð�?”¬lder solution, given for example as (-0.52+?10000 -??) In order to obtain the solution previously247
shown as ?? 3 (??, ??) we let epsilon approach zero for solutions ?? 3 (??, ?? 3 , ??) in the space ?(?? 3 , ??).248
In this space a ball ?? ??? 3 ?? ?? ; ??? exists with ?? > 0. Here ?? is defined as a measure of how close one249
is to the center of a given cell in the lattice of the 3-Torus. Due to the definition of the space ?(?? 3 , ??), the250
set {1,?? 1 , ?? 1 2 } is linearly independent, implying that all the constants are zero in the solution except ??251
3 and ?? 4 associated with variables ?? 3 , ?? respectively. The constants ?? ?? ranging from ?? = 1. .6 in252
the solution of the Euler Equation (I) appear in the solution and in particular as an argument of the Lambert253
W function and is expressed as the following linear sum in spatial and time variables,?? = ?? 1 ?? 1 + ?? 2 ??254
2 + ?? 3 ?? 3 + ?? 4 ?? + ?? 5255

Note that the solution can be obtained by solving Eq.(I) when 3? ??? 3 ??? 3 ? 2 ?? -? ??? 3 ??? 3 ? 2 ? 3256
? ??? 3 ??? 3 ? 2 ??, that is for ?? ? 100 ???? ?? 3 .257

It is found that an exact solution is given by Maple 2023 software when this approximation is made for large258
enough density. It is also worthy to note that for lower densities when we retain both terms in the previous259
approximation, that for the locally Hð�?”¬ð�?”¬lder continuous functions in time ??, with Hð�?”¬ð�?”¬lder260
constant equal to exactly 1/3, the product term? ??? 3 ??? 3 ? 2 ??? 3261

4 ???262

in Eq.(I) becomes independent of time ?? and is only dependent on the spatial variables.263
The Onsager conjecture suggested the value ?? = 1/3 for the case of the Euler equations but the conjecture was264

mainly considering only the H ð�?”¬ð�?”¬?lder regularity with respect to the space variables. Here we consider265
a combination of velocity-time conditions (??, ??), which depend precisely on the Hð�?”¬ð�?”¬lder exponent.266
As outlined in the introduction, P. Isett’s proof shows that if ?? < 1/3 (strictly less than) then conservation of267
energy fails. The works of Eyink [7,8] and Constantin, E, Titi [9] on the Onsager conjecture describe results in268
a Fourier setting and in a space called a Besov space (slightly larger than Hð�?”¬ð�?”¬lder spaces), respectively.269
A well known result is that if the velocity is a weak solution to the Euler equations such that, ?? ? ?? 3 (0, ??;270
?? 3 ??,? (?? 3 ))???(0, ??; ?? 2 (?? 3 ))271

with ?? > 1/3, (strictly greater than) then, ???(??)? = ??? 0 ?, for all ?? ? [0, ??]. This result is also272
true in Hð�?”¬ð�?”¬?lder spaces which was the setting that L. Onsager stated his conjecture rather than Besov273
spaces. Hð�?”¬ð�?”¬lder continuous functions, as defined in Berselli [10] with a focus on space-time properties274
of functions with ”homogeneous behavior”, that is the one of the Hð�?”¬ð�?”¬lder semi-norm [. ] ?? (to be275
defined) and denote by ?? ?? the space of measurable functions such that this quantity is bounded. We say that,276
?? ? ?? ?? (0, ??; ?? ?? (?? 3 )), if there exists ð�??”ð�??” ?? : [0, ??] ? ? + such that 1)277

|??(??, ??) -??(??, ??)| ? ð�??”ð�??” ?? (??)|?? -??| ?? , ? ??, ?? ? ?? 3 , for a.e. ?? ? [0, ??],278
2)? ð�??”ð�??” ?? ?? (??)???? < ? ?? 0 and ð�??”ð�??” ?? (??) = [??(??)] ?? for almost all ?? ? [0, ??].279
The space is endowed with the semi-norm???? ?? ?? (0,??;?? ??? ??? 3 ?) â??” ?? ð�??”ð�??” ?? ?? (??)????280

?? 0 ? 1/?? Finally [??] ?? â??” ?????? ?? ? ?? |??(??) -??(??)| |?? -??| ??281
In Berselli [10], (see Theorem 4.2 there) it is proven that if ?? is a weak solution to the Euler equation (in282

usual form), such that ?? ? ?? 1/?? (0, ??; ?? ?ð�??”ð�??” ?? (?? 3 )) with ?? ? ? 1 3 , 1? (where ?? ?ð�??”ð�??”283
?? (?? 3 ) ? ?? ?? (?? 3 ) is the slightly smaller space defined through the norm with ð�??”ð�??”: ? + ? ?284
+ a non-decreasing function such that lim ???0 + ð�??”ð�??”(??) = 0.) then ?? conserves the energy.???? ??285
ð�??”ð�??” ?? = max286

In our proof of the endpoint regularity of Onsager’s conjecture we are considering the Hð�?”¬ð�?”¬lder287
continuous functions in the space ?? ?? (?? 3 ).? ?? 2 ? ?? 3 2 ?? ?? 3 =-?? (??, ?? 3 , ??)d?? 3288
???? 1 ???? 2 =? ??(?? ??;??) ?? 3 2 (0) ???? = ? ??(?? ??;??) (?? + (|?? 1 | 2 + |?? 2 | 2 + |?? 3 | 2 )) 2 ????289
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5 FIGURE 3: ENERGY OF PNS SYSTEM FOR ARBITRARILY LARGE
AND POSITIVE DATA ??

The integrals are carried out over a cube ??(?? ?; ??) = [-??, ??] 3 , centered about ?? ? . For ?? = 1/2290
the scaled solutions and hence graphs are shown in Figure 3 and4. It is seen that in either step in both figures291
that energy is conserved thereby proving the endpoint regularity in Onsager’s Conjecture. In Figure 3 and4, the292
thicker part of curves hides the energy (E) at ?? = 0, behind the solution curve. For ?? > 0 there are two curves293
coinciding and the same is true for ?? < 0.294

The key empirical fact underlying the Onsager theory is the non-vanishing of turbulent energy dissipation295
in the zero-viscosity limit. The requirement for a non-vanishing limit of dissipation is that space-gradients of296
velocity must diverge. It is observed in experiment that when integrated over small balls or cubes in space the297
high-Reynolds limit of the the kinetic energy dissipation rate defines a positive measure with multifractal scaling.298
The solution for Euler’s equation given in this paper agrees with this fact that gradient of ?? 3 with respect to299
spatial position ?? 3 does in fact diverge. This is a short-distance/ultraviolet (UV) divergence in the language300
of quantum field-theory, or what Onsager himself termed a ”violet catastrophe” [12]. Since the fluid equations301
of motion (I.1) contain diverging gradients, they become ill-defined in the limit. In order to develop a dynamical302
description which can be valid even as ? ? 0, some regularization of this divergence must be introduced.303

5 Figure 3: Energy of PNS system for arbitrarily large and304

positive data ??305

There are two steps here. First we set ?? 3 (?? 3 , ?? ) equal to the variable ?? appearing in the initial condition306
when solving for the unknown constant ?? 6 where ?? > 0 , and recall that the initial condition for ?? 3 is given307
as the sum of arbitrarily large data ?? and sums of reciprocal degenerate Weierstrass P functions in the three308
directions for small ??.309

(By reciprocal we mean that unity is divided by the Weierstrass P functions with a bounded periodic result.)310
In the second step we solve for ?? 3 (??, ?? 3 , ??) for arbitrarily large negative data ?? < 0. In both steps311
separately we keep?? 3 ? ?? ??? 3 ?? ??312

; ??? and integrate the square associated with energy of solution ?? 3 (??, ?? 3 , ??), that is we will show313
that our solution satisfies conservation of energy, (for all times ?? ? [0, ??)). In the book ”Theory of unitary314
symmetry” by Rumer and Fet [12], the Laplacian is defined an integration over a 3D-ball, in particular an epsilon315
ball.316

Therefore Eq(I) becomes:317
(II)? ? 3 ?? 3 ??? 3 3 + ? 3 ?? 3 ??? 3 ??? 2 2 + ? 3 ?? 3 ??? 3 ??? 1 2 ? ??(?? -1) + 1/6 ?3???? 3 ? 2 ??318

3 ??? 3 2 + 3 ? ??? 3 ??? 3 ? 2 ?? -? ??? 3 ??? 3 ? 2 + ? 2 ?? 3 ??? 3 ??? 1 + ? 2 ?? 3 ??? 3 ??? 2 ? ??? 3319
??? = 0320

Equation (II) is integrated over an epsilon ball so we solve Eq.(II) in a neighborhood of epsilon =0 that is near321
the center of each cell of the lattice in the space ?(?? 3 , ??). So we integrate Eq. (II) over an epsilon ball first322
and then take limit. We use the Fet theory on writing the Laplacian as an integral over an epsilon ball.323

Here we know that there is an operator Î?” ?? ?? 3 = 3 4???? 3 ? ?? 3 (??) -?? 3 (0)???? such that in the324
limit as epsilon approaches zero, 10 ?? 2 Î?” ?? ?? 3 =Î?”?? 3 . Integral is over epsilon ball centered at ?? ? =325
(??, ??, ??). Proof:326

We take the Taylor expansion around 0 (or center ?? ? to second order, which gives terms proportional to ??327
1 , ?? 1 ?? 2 and ?? 1 2 , however due to the symmetry of the ?? 1 , ?? 1 ?? 2 related terms these integrate to328
zero over the ball and thus we have that,Î?” ?? ?? 3 = 3 4???? 3 ? 1 2 ?? 2 ?? 3 ???? 1 2 ? ?? 1 2 ???? + 1 2329
?? 2 ?? 3 ???? 2 2 ? ?? 2 2 ???? + 1 2 ?? 2 ?? 3 ???? 3 2 ? ?? 3 2 ?????+??(?? 3 )330

where all derivatives are evaluated at the center ?? ?. The integrals all give the same value,? ?? 1 2 ???? = 1331
3 ? ?? 1 2 +?? 2 2 +?? 3 2 ???? = 4?? 3 ? ?? 4 ???? ?? 0 = 4????5332

15333
The viscous solution when ?? is non-zero is subject to a rewriting of Eq (I) and to use this result first we334

integrate Eq.(I) over an ?? -ball, centered at each center of cells of the lattice of 3-Torus. Next using the335
divergence theorem for the term of Eq(I), that is specifically the expression?? 3 ? ? 2 ?? 3 ??? 3 2 + ? 2 ?? 3336
??? 2 2 + ? 2 ?? 3 ??? 1 2 ?, gives |??? 3 | 2 ???? ????? ?? (??) ? = 0337

where the surface integral is zero and since we are integrating a positive expression on an epsilon ball, at epsilon338
=0 the integral is zero. where the differential has been transformed to spherical coordinates in 3D. Substituting339
this into the main statement of the theorem, we obtain,Î?” ?? ?? 3 = 3 4???? 3 4???? 5 15 1 2 ? ?? 2 ?? 3 ????340
1 2 + ?? 2 ?? 3 ???? 2 2 + ?? 2 ?? 3 ???? 3 2 ? + ??(?? 3 ) = ?? 2 10 Î?”?? 3 + + ??(?? 3 )341

Finally we take the limit,lim ???0 10 ?? 2 Î?” ?? ?? 3 = lim ???0 [Î?”?? 3 + ??(??)] = Î?”?? 3342
In Eq.(II) the Laplacian is differentiated wrt to ?? 3 . Using Fet theory, where we integrate Î?” ?? ?? 3 on343

an epsilon ball centered at zero and generalized to the center of any cell center of the lattice of the 3-Torus, we344
obtain the following PDE for large density:1/6 ?3???? 3 ? 2 ?? 3 ??? 3 2 + 3 ? ??? 3 ??? 3 ? 2 ?? + ? 2 ?? 3345
??? 3 ??? 1 + ? 2 ?? 3 ??? 3 ??? 2 ? ??? 3 ??? + ??(?? -1) ???? 3 ???? 3 = 0 (III)346

with solution:?? 3 = (1/3 -?? 4 ?? 1 -?? 4 ?? 2 + (-(6?? 1 ?? 1 + 6?? 2 ?? 2 + 6?? 3 ?? 3 + 6?? 4 ?? + 6??347
5 )?? 3 ?? 4 2 ?? 5 ?? + 6?? 3 ?? 4 2 ?? 6 ?? - 18(?? 1 ?? 1 + ?? 2 ?? + ?? 3 ?? + ?? 4 ?? + ?? 5 ) 2 ?? 3 ??348
4 ?? + ?? 1 2 ?? 4 2 + 2?? 1 ?? 2 ?? 4 2 + ?? 2 2 ?? 4 2 ) 1/2 ?/(?? 3 ?? 4 ??) ?? 3 = 0.052, ?? 4 = 0.05349

for ?? = 1000, ?? = 10000, the following result follows in Figure 5. I350
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Here it is clear that there exists a solution of PNS that is not smooth in time ?? for the first and higher351
derivatives.352

6 The Full Equation Proof for the Periodic Navier Stokes353

Equations354

Integrating the Navier Stokes equations over an epsilon ball we obtain,? ?? ?? ;?? ?? ??1 + ?? ??2 + ?? ??4355
???? = -? ?? ?? ;?? ?? ??3 ???? (IV)356

The first part of ?? 3 becomes,?? 3 = ? ? ?(?),357
where?(?) = 1 ?? ??? 3 2 ? ?? 1 ?? 2 ?? + ?? ? ? ?? 3 ???? ???? 3 ?358
where ?? is the pressure and ?? is the density of the fluid.359
Dividing Eq.(IV) by the measure or volume of the ball of radius epsilon centered at point ??.360
?? ?? ;?? we know since ? is continuous everwhere on the 3-Torus (since integrals are continuous in inverting361

gradient), and in particular at the the center of the epsilon ball (note higher order derivatives of ?? 3 blowup,362
not ?? 3 and pressure), then, (V) However using the Fet theory, we can see that the integral on the RHS of363
Eq.(IV) divided by the volume of the ball is related to the integral over the ball centered at ?? of Eq.(VI) is the364
PDE we obtained previously and occurs at an arbitrarily small epsilon ball centered at each cell of the lattice of365
the 3-Torus.366

In reference [5], we showed that, where? 1 = ? + ? 2367
Recall that the three velocities are isotropic and they are continuous on ?? ??;?? and ? 2 is continuous on the368

epsilon ball. Also ? 2 is independent of ?? for Hð�?”¬ð�?”¬lder continuous functions at ?? = 1/3. Also if we369
specify the time, the solution is a Hð�?”¬ð�?”¬lder continuous function in the data ?? with a Hð�?”¬ð�?”¬lder370
constant equal to one half. Since the negative pressure gradients are greater than or equal to zero being reciprocal371
Weierstrass P functions and ?? 3 2 ? 0 and ?? 1 and ?? 2 cancel in the space ?(?? 3 , ??) when integrating on372
the six faces of surface of a cell of ?? 3 , we have that, Theorem ?? ??1 + ?? ??2 + ?? ??4 = 0 if and only if ? 1373
is continuous on the epsilon ball ?? ??;?? .374

7 Global375

Proof: Apply (V) to ? 1376

8 IV. Conclusion377

Satisfying a divergence free vector field and periodic boundary conditions respectively with a general spatiotem-378
poral forcing term ð�??”ð�??” which is smooth and spatially periodic, the existence of solutions which blowup in379
finite time for PNS can occur starting with the first derivative and higher with respect to time. P. Isett (2016) (see380
[13]) has shown that the conservation of energy fails for the 3D incompressible Euler flows with Hð�?”¬ð�?”¬lder381
regularity below 1/3. (Onsager’s second conjecture) The endpoint regularity in Onsager’s conjecture has been382
addressed, and it is found that conservation of energy occurs when the Hð�?”¬ð�?”¬lder regularity is exactly 1/3.383
The solution for Euler’s equation given in this paper agrees with this fact that gradient of ?? 3 with respect to384
spatial position ?? 3 does in fact diverge. This is a short-distance/ultraviolet (UV) divergence in the language385
of quantum field-theory as L. Onsager proposed. Finally very recent developed new governing equations of fluid386
mechanics are proposed to have no finite time singularities. This is the focus of the ongoing work of the author to387
be presented in the near future. Finally future work to conclude the nature of flows in a non-epsilon or arbitrary388
small ball for the 3-Torus will be carried out. 1 2389

1 © 2023 Global Journ als
2 Exploring Finite-Time Singularities and Onsager’s Conjecture with Endpoint Regularity in the Periodic

Navier Stokes Equations
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