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4

Abstract5

The article is devoted to the development and implementation of new mathematical functions,6

differentialintegral functions that provide differentiation and integration operations not only7

according to existing algorithms described in textbooks on higher mathematics, but also by8

substituting a certain parameter k into formulas developed in advance, forming the necessary9

derivatives and integrals from these formulas. The Purpose of the Research: The expansion of10

the concept of number, in particular, in classical mechanics, physics, optics and other sciences,11

including biological and economic, which makes it possible to expand some understanding of12

the essence of space, time and their derivatives. Materials and Methods: The idea of fractional13

space, time and its application is given. The usual elementary functions and the Laplace14

transform were chosen as the object of research. New functions, differentialintegral functions,15

have been developed for them. A graphical representation of these functions is given, based on16

the example of the calculation of the sine wave. Examples of calculating these functions for17

elementary functions are given. Of particular interest is the differentialintegral function, in18

which the parameter k is a complex number s, s = a + i ? b, although in general, the19

parameter k can be any function of a real or complex argument, as well as the20

differentialintegral function itself. Research Results: As a result of the research, it is shown21

how the Laplace transform and Borel’s theorem are used to calculate differentialintegral22

functions. It is shown how to use these functions to carry out differentiation and integration.23

It is presented how fractional derivatives and fractional integrals should be obtained.24

Dependencies for their calculation are obtained. Examples of their application for such25

functions as cos(x), exp(x) and loudness curves in music, Fletcher-Manson or26

Robinson-Dadson curves are shown. Conclusions: Studies show the possibility of a wide27

application of differentialintegration functions in modern scientific research. These functions28

can be used both in office and in specialized programs where calculations of fractional29

derivatives and fractional integrals are needed.30

31

Index terms— differentialintegral functions, derivative, fractional derivative, integral, fractional integral.32

1 I. Introduction33

n modern sciences, such as mathematics, physics, astronomy, economics and other sciences, there is little use34
of differential functions in calculations, because with the help of fractional derivatives and integrals, very few35
physical, natural, social and other processes are described that use not only the first and second derivatives,36
single and double integrals, but fractional derivatives and fractional integrals. So in classical mechanics, the first37
derivative is used as velocity, the second as acceleration, and the third as a jerk. A one-time integral is used to38
calculate the area under the curve, the mass of an inhomogeneous body, a two-time integral is used to calculate39
the volume of a cylindrical beam, a three-time integral is used to calculate the volume of the body.40

They can be found in the equations of mathematical physics, where, in particular, generalized functions41
and convolutional operations on them are used, and in spectral analysis, and in operational calculus based on42
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4 II. MATERIALS AND METHODS

integral Fourier and Laplace transformations, and in many other methods where differentiation and integration43
of functions are used.44

The basis of all these concepts is the derivative and integral 1 7 Year 2023 ( ) I y’ and d/dx. Figure 1 shows (as45
one of the options) the currently existing designations of differentials and integrals, widely used in the literature.46

2 Figure 1: Notation of integrals and derivatives47

As can be seen from Figure 1, all the variety of these notations has one property common to all: they try to48
reflect in various ways, either with the help of numbers or graphically, the order of derivatives or the multiplicity49
of the integral.50

In order to unify the record of derivatives and integrals, consider them relative to a certain numerical axis ”K”51
(Figure 2), where the value of the parameter k corresponds to the multiplicity of the integral or the order of the52
derivative. So, in this scenario of notation, k = -1 corresponds to the designation of a single integral ? ??(??)????53
from the 2nd line and the designation of the same integral f 1 *y from the 3rd row, and for k = 1-we have the54
designation of the first derivative y’ from the 1st row and the designation of the same first derivative d /dx from55
the 2nd row.56

The third line contains the notation of differentials and integrals based on convolutional operations of57
generalized functions: y (k) = f -k * y, where k >0, a value unequal to an integer is called a fractional derivative of58
order k. An expression of the form: y (k) = f k * y is called a primitive of order k, i.e. an integral of multiplicity59
k [1].60

3 <-1>61

<-0,46> <0> <+1> <+1,35> <+2> y y y y y y ??–|——————x——————|——————————|—62
————x——————–|——–> At the same time, all derivatives, including fractional ones, having a negative63
index, are located on the numerical axis on the right, and all integrals with a positive index -on the contrary, on64
the left. It was possible to arrange the designations differently, change the plus to minus, but the essence would65
not change at the same time. There are many types of symbols, binding to the numeric axis requires clarification.66

To bring these notations in line with the numerical axis ”K”, the 4th line contains universal notations for67
derivatives of any order and integrals of any multiplicity, using angle brackets.68

The angle brackets denote the order of the derivative or the multiplicity of the integral, for example, y <0> =69
y(x) is the function under study, and y <-1> =? ??(??)???? is its integral, multiplicity 1. So y <2> = d 2 /dx 270
= y” is the second derivative, and y <-0,46> is the integral, multiplicity 0,46. For example, a certain derivative71
of the order of 1,35 is denoted as y <1,35> . In other words, if there is a positive number in the angle brackets,72
it means it is some kind of derivative, and if it is negative, it means it is an integral. And it is easy to read, and73
it is located correctly on the numeric axis: negative values of the k index are on the left, and positive values are74
on the right. This form of writing integrals and derivatives is very convenient, for example, for their designation75
on graphs or diagrams. Figure 2 shows an example of the notation of derivatives and integrals for the parabola76
y(x) = x 2 .77

In addition to notation on graphs, this method can be used for programmers writing programs in various78
programming languages, for example, ... int main () { float y, u, z; int n3; ... z= y (4) <1.5>; u=n3 <-0,25>; ?79
where y <1,5> is the derivative of the function y(4) of order 1,5 and n3 <-0.25> is the integral of multiplicity80
0,25 of the function n3. In Figure 2, the integral of multiplicity -0,46 and the derivative of the order of 1,35 are81
shown for x > 0.82

It should be borne in mind that when calculating a derivative of a ”high” order, say, 123 orders -y <123> ,83
previously it was necessary to perform 122 differentiation operations beforehand. This is due to the fact that84
the definition of the derivative/integral implies an increase in the order of the derivative/integral by only 1. It is85
impossible, using the existing definition of the derivative, to immediately calculate a high-order derivative from86
it. Only with the y < -1> = x 3 /3 y < -0,46> = 0,62x 2,46 y <0> = x 2 y <1> = 2x y <1,35> = 2,22x 0,6587
y <2> = 2 help of sequential multiple calculations can the order of the derivative be increased to the desired88
value. The same applies to integration.89

4 II. Materials and Methods90

This method of calculating derivatives reduces the efficiency of using the differentiation operation, for example,91
in series expansions, because it requires calculating derivatives of a ”high” order, and this is timeconsuming and92
involves calculation errors. Therefore, in such calculations, only the first few terms of the decomposition are93
taken, and the rest are discarded, which increases the calculation error.94

As for calculating integrals, especially multiplicities greater than 2, this is an even more difficult task. Thus,95
the lack of a simple, reliable and accurate method of differentiation and/or integration significantly hinders96
computational progress in mathematics.97

The same problem is observed in physics. Many laws of mathematical physics, most often appearing in simple,98
accessible calculations, are based on the use, mainly, of the 1st, maximum 2nd derivative (for example, current i99
= dq / dt, force F = m ? d 2 x/ dt 2 ) and a single integral, for example, voltage across the capacitoru(t) = 1 /100
C ?? ??(??)????.101
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It is very rare in everyday physics or mathematics to find a 3rd derivative or a 3-fold integral. This does not102
happen often. One of the ways to use a 3-fold integral is the Ostrogradsky-Gauss integral to calculate the volume103
of a body if the surface bounding this body is known.104

And if you look more broadly, then neither in physics nor in mathematics have the everyday laws of the105
universe using fractional derivatives and integrals been discovered so far, because their calculation is fraught with106
great difficulties [1]. At the same time, it is possible that all the diversity of the world exists exactly there, in a107
fractional dimension, which can be described and studied, precisely with the help of fractional (analog), and not108
integer (discrete) integrals and differentials.109

Take, for example, the mechanism of describing multidimensional structures, for example, multidimensional110
space. Our 3-dimensional space and one-dimensional time are described by discrete (integer) coordinate values,111
in this case one and three. At the same time, the question of the existence of a space having, not 3, but, say, 2,345112
coordinates is of great scientific and practical interest. In other words, the structure of a special ”fractional”113
space, no longer two-dimensional, is a plane (because to describe the plane, you need 2 coordinates, and we have114
more -2,345), but also not a three-dimensional volume (where 3 coordinates are needed), i.e. something average115
between the plane and the volume. It is very difficult to imagine such a structure. In nature, such a space does116
not seem to exist.117

It is even more difficult to determine the velocity or acceleration in such a space, i.e. to describe the kinematics118
of the motion of bodies. If it is possible to define the force in such a space (or to use the already existing classical119
method of specifying forces), then we can count on success in creating the dynamics of such structures, i.e., in120
other words, to create the mechanics of multidimensional space. At the same time, our classical 3dimensional121
mechanics will turn out to be a special case of a more general mechanics -the mechanics of multidimensional122
spaces. This can be said about other physical laws of the universe.123

And whether our idea of the world will change with the emergence of a new, more general, idea of space. So124
far we don’t know much about this, because our concepts are tied to a three-dimensional dimensional space, and125
all the diversity of the world ”lies” in a multidimensional ”fractional” world that has not been studied at all.126

5 Global Journal of Researches in127

6 A number of legitimate questions arise:128

-What kind of space is ”located”, say, between a plane (2-dimensional space) and a volume (3-dimensional), i.e.129
a substance with the dimension of space R, where 2<R <3? -What kind of physical quantity, which is between130
speed and acceleration between y <1> and y <2> from the move, i.e. a physical quantity, defined, for example,131
the fractional derivative of y <1,23> , the order of 1,23 (not 1 or 2)? -Whether Newton’s laws are applicable to132
the so-called fractional space? -How will the definition of force in fractional space change (if it changes)? -Will133
it be possible to apply the classical laws of mechanics to fractional space, or will it be necessary to create a new,134
more general, mechanics of the macro and microcosm? -Will the interaction between space and time change if135
we ”replace” the classical concept of space with a fractional one? -Will there be changes in Einstein’s theory of136
relativity and will the concepts of ”gravitational, electromagnetic and other interactions” and much, much more137
remain the same? Year 2023 ( )I138

Application of Differentialintegral Functions a calculation algorithm, simple and convenient, especially for139
novice researchers, where instead of calculating integrals/differentials, it would be possible to use the usual140
substitution of numbers, in which the desired order or multiplicity could be set without performing calculations,141
but simply substitute the desired parameter into the desired formula and get a ready derivative/integral without142
their calculations, i.e. immediately. Such a tool, which could be called, for example, functions -SL(x, k), would143
greatly simplify the process of calculating derivatives and integrals and significantly expand the boundaries of144
our knowledge. First, we introduce the concepts of a differential integral function based on the definition of a145
differential integral. The differential integral function SL (x, k) is an ordinary function of several arguments,146
where, separated by commas, its arguments (in this case one -x) and the parameter k, the order of future147
derivatives and/or the multiplicity of integrals are indicated 2 For example, for a parabola y(x) = x 2 , such a148
differentialintegral function SL(x, k) will have the form where, x is the argument of the function, k is a parameter149
that specifies the order of the derivative or the multiplicity of the integral. 4 For example, for a parabola, we150
substitute k = 0 into it. Then, for k= 0y (x, k) = x 2 , (Ð?” (3 -k) = 2)151

(the main, mother function). How to use it? You need to set the parameter k and get the desired derivative152
or integral. the function (parabola) does not change. When k = 1y (x, k) = 2x and the parabola is transformed153
into its 1st derivativey <1> . When k = -1 y (x, k) = x 3 /3 and the function becomes its one-time integral -y154
<-1> , and for k = -2 y (x, k) = x 4 /12 -double -y <-2> . No calculations, just substitution.155

Fractional derivatives and integrals are of particular interest, because there is no simple and reliable way to156
calculate them, except for the method indicated above [2]. In this case, the method of obtaining is the same. To157
calculate them, it is enough to substitute the necessary value of the derivative instead of the parameter k, for158
example, k = 0.123 and the parabola becomes its derivative of the order 0.123 -y <0.123>:159

(160
If it is necessary to obtain an integral of multiplicity 3,45 -y <-3,45> , it is enough to substitute k = -3,45161

into the differential function (1) and the parabola becomes its integral of multiplicity 3,45 -y <-3,45> :162
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7 III. RESEARCH RESULTS

(3) This method of calculating fractional derivatives is no different from the method of obtaining integer163
(discrete) derivatives -the same substitution. There is no difference between an integer or fractional deriva-164
tive/integral. Simple substitution to get a given result.165

Consider another example: y(x)=sin(x). For a sine wave, the differentialintegral function SL(x,k) will have166
the following form:167

(4) This is a sine wave whose phase shift depends on the order of its derivative/multiplicity of its integral. At168
k = 0, the sine wave does not change, at k = 1, and becomes cos(x), i.e. its the first derivative is y <1> , and169
at k = -1 it becomes -cos(x), i.e. its integral is y <-1>. . At -1<k <1, the function occupies an intermediate170
position betweencos(x) and cos(x), including sin(x) at k = 0.171

The differential integral function for the sine wave ( ??) is a graphical representation of the differential integral172
function, namely, the parameter k represents a part of the right angle for unit orts. At k = 1, the function SL(x,1)173
becomes the 1st derivative, such a unit ort is perpendicular to the abscissa axis, and at k = var it is a fractional174
derivative of k order and the angle k (in values from 0 to 1 or in % of 90 degrees) it is only a part of the right175
angle.176

For the exponent y(x) = e x , the differential integral function SL(x, k) does not depend on k and all its177
derivatives and integrals are equal to each other and equal to the exponent itself.????(??, ??) â??” 2 ? ?? 2???178
Ð?”(3???) ????(??, ??) â??” 2 ? ?? 2?0,123 Ð?”(3?0,123 ) ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”??, 3 ? 1,12179
????(??, ??) â??” 2 ? ?? 2+3,45 Ð?”(3+3,45) ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”ð�??”??, 3 ? 7,6060 ?3 ?? 5,4180
????(??, ??) ?= sin (?? + ?? ? ?? 2 )181

These examples can be summarized in Table ??, where its derivatives and integrals are given for some182
elementary functions.183

Table ??: Examples of calculation of derivatives and integrals y <-1> y <-0.5> y <0> y <0.5> y <1.5> SL184
(x, k)Î?” (n+2) Î?” (n+1) x n+1 Î?” (n+1,5) Î?” (n+1) x n+0,5185

x n Î?” (n+0,5)Î?” (n+1) x n-0,5 Î?” (n-0,5) Î?” (n+1) x n-1,5 Î?” (n+1-k) Î?” (n+1) x n-k186
x 3 /3 0,601x 2.5187
x 2 1,504x ??nd k x and k y -are still a parameter. In addition, any continuous elementary function can be188

used as a parameter, including the same differential integral function, for example:(x, y, k x , k y ) = 2 ? k y +189
(x -y) ? k x,(??, ??, ??1, ??2) â??” ?? sin ??? ???1+ ?? 2 ??2? (5)190

Of particular interest is the differential integral function, in which the parameter k is a complex number s, s191
= a + i ? b, although in general, the parameter k can be any function of a real or complex argument.192

7 III. Research Results193

To obtain the differential integral function, we recall the Laplace integral transformation and Borel’s theorem.194
The integral Laplace transform has the form??[ð�??”ð�??”(??)] = ??(??) = ? ð�??”ð�??”(??)?? ????? ???? ?195
[ð�??”ð�??”(??) ? ?? ????? ????] <?1> 0<??<? ? 0(6)196

where s = a + i * b is a complex quantity. Here f (t) is the original function, and F(s) is its Laplace image.197
This is a direct conversion of the original into an image. The inverse Laplace transform(7) ð�??”ð�??”(??) â??” 1198
2???? ? ? ?? ???? ??(??)???? ? [?? ???? ? ??(??) ? ????] <?1> ?? ????<?? +??? ??+???? ???????199

it is necessary to find the original of the function by its image.200
Let’s consider one of the main properties of this transformation -the differentiation of the original function.201
LetL[f(t)] = F (s). Let’s find L[f(t )<1> ],202
where f(t) ??1> is the 1st derivative, andL[f (t) <1> ]-is its image. ??[ð�??”ð�??”(??) <1> ] = [ð�??”ð�??”(??)203

<1> ? ?? ????? ????] <?1> 0<??<? = ?? ????? ? ð�??”ð�??”(??) 0 <??< ? + ?? ? [ ð�??”ð�??”(??) ? ?? ????204
????] <?1> 0 <??< ? (8) L [f (t) <1> ] = s * F (s) -f (0) (9) For f (0) = 0 L [f (t) <1> ] = s * F(s) (10)205

and the differentiation of the original function corresponds to the multiplication of the image of the function206
by s. Let’s consider another important property -the integration of the original.207

Ifg(t) = [f(?)d?] <-1> 0<?<t ,then under zero initial conditions g (t) <1> = f (t) and L[g(t) <1> ] = L[f(t)]208
= s * L[g(t)] = s * L[[f(?) d?] <-1> 0 <?< t] (11) Since L[f(t)] = F (s), then L [[f (?)* d?] <-1> 0<?<t =209
F(s)/s (12)210

that is, the integration of the function corresponds to the division of the image F (s) by s.211
If for t?? the function f (t) increases no faster than M * e at , then e -st * f (t) ?0 for t?? and is equal to f (0),212

and Year 2023 © 2023 Global Journ als ( )I213
Taking into account expressions ( ??4) and ( ??6), we can conclude that the operations of differentia-214

tion/integration of the original can be replaced by algebraic actions (multiplication/division by s) on their images215
[3]. Thanks to this replacement, this method has found the widest application in integral and differential calculus216
[4].217

However, the case is of particular interest when the function is represented asL [f (t)] = F(s)/(s -k ) (13)218
that is, the image is divided by (s-k). In this case, depending on k, we get fractional derivatives/integrals. For219

k> 0, fractional derivatives of the order k are formed, and for k <0, fractional integrals of the same multiplicity220
are formed.??[ð�??”ð�??”(??)] = F(s) ?? ??? = 1/(Ð?”(???)) (14) SL (x, k) = L [f (t)](15)221

Let’s consider some examples of the use of differential integral functions in solving approximation problems.222
Suppose must be approximated by a power series ???_cos(x) in a neighborhood of the point x0, the function223
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cos(x), and choose the polynomial coefficients a 0 ...a 5 so as to minimize the mean square error of approximation224
of this polynomial are:_cos(x) = a 0 + a 1 ?x + a 2 ?x 2 + a 3 ?x 3 + a 4 ?x 4 + a 5 ?x 5 (16)225

and at the selected point is known for its derivatives and differentials, as an integer and the fraction.226
To do this, we fulfill the approximation conditions according to which the value of the polynomial _cos(x)227

and its fractional derivatives (for simplicity of calculation, only six (5) derivatives are used 6 . To increase228
the accuracy, you can use more, for example, several dozen derivatives, the computer allows it. Instead of229
derivatives, its integrals can also be used in the same way) in the vicinity of a given point x0, from the domain of230
the polynomial definition, should equal the corresponding values of the desired function cos(x) and its fractional231
derivatives (and integrals). 2 points are selected as points -x = 3 and x = 15.232

The fractional derivatives/integrals for the elements of the polynomial are defined as????(??, ??, ??) â??”233
Ð?”(??+1)??? ?? ??? Ð?”(??+1??? ) (17)234

where x -is the matrix of diagnostic information; n -is the exponent of the polynomial; k-is a parameter that235
sets the multiplicity of the integral or the order of derivatives. The solution was made in the MathCad program,236
the calculation listing is given for the point x = 3 and additionally for x = 15.237

Another example. In addition to the approximation at a point, using the differential integral functions, it is238
possible to approximate on a given segment. Examples of this approximation are given below.239

Let it be necessary to approximate, for simplicity, the known functions cos (x) and the exponent exp(x),240
as well as cos(x) on the plot 4 <x <6, as well as volume curves, according to the type of Fleicher-Manson or241
Robinson-Dadson curves. For ease of calculation, we approximate 6 points for 2 cos (x) functions, 4 (four) points242
for the exponent exp(x) and 23 for volume curves.243

For a sine wave, the desired points will be of two types. In the first case, these are the points -5, -4, -2, 1, 3,244
5. In the second case, this is -5, -3, -1, 1, 3, 5. We will approximate the sinusoid with a polynomial (17).245

8 Exponent -exponent.246

These expressions (18) and ( 19) define fractional derivatives/integrals of order k, and are the differential functions247
of the desired function f(t). Examples of these functions are shown in Table ??.a =A1 -1 ?B1248

For the first case, for points -5, -4, -2, 1, 3, 5 the initial data obtained by formula (17) will have the following249
form.250

As a result of calculating the series rjad_cos (x), we get the values of cos (x).????ð�??”ð�??”??_1_cos (??)251
â??” ??2 0 + ??2 1 + ??2 2 ? ?? 2 + ??2 3 ? ?? 3 + ??2 4 ? ?? 4 + ??2 5 ? ?? 5(19)252

The graphs of these two functions cos (x) and rjad_1_cos(x) and some values of these graphs are shown in253
Figure ??. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = 5 ? 0 5 2 ? 1 ? 1 2 rjad_1_cos x ( ) cos x ( ) 2 ? 3 x A21?254
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := B2 cos 5 ? ( ) cos 4 ? ( ) cos 2 ? ( ) cos 1 ( ) cos 3 ( ) cos 5 ( ) ? ? ? ? ? ? ?255
? ? ? ? ? ? ? ? ? := b2 A2 1 ? B2 ? := Year 2023 © 2023 Global Journ als ( ) I256

For another cosine, for the values -5, -3, -1, 1, 3, 5 the initial data obtained by the formula (17) will have the257
following form:????ð�??”ð�??”??_2_cos(??) â??” ?? 0 + ?? 1 ?? + ?? 2 ?? 2 + ?? 3 ?? 3 + ?? 4 ?? 4 + ?? 5258
?? 5(20)259

The graphs of these two functions cos (x) and rjad_2_cos(x) and some values of these graphs are shown260
in Figure 4. If we look at the same graphs in other coordinates, we can say that at these points the graphs261
coincide with their values, and at other points they do not, and they differ significantly. The values of these two262
functions-rjad_1_cos(x) and cos (x) in other coordinate systems coincide only in this section in ± 2?, and for263
other values of the argument they differ greatly. Figure 6 shows the values of these two functions rjad_2_cos(x)264
and cos (x).? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := d A3 1 ? B3 ? := 5 ? 0 5 2 ? 1 ? 1 2 cos x ( )265
rjad_2_cos x ( ) 3 ? 1 x B3 cos 5 ? ( ) cos 3 ? ( ) cos 1 ? ( ) cos 1 ( ) cos 3 ( ) cos 5 ( ) ? ? ? ? ? ? ? ? ? ? ?266
? ? ? ? ? := _x 5 ? 3 ? 1 ? 1 3 5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := © 2023267

In the given figure shows that the values of these two functions rjad_2_cos(x) and cos (x) in different coordinate268
systems coincide only in this region of ± 6, and for other values of the argument vary greatly.269

This suggests that approximation by differential integral functions is possible both at a point and at a certain270
area. The approximation error is minimal and can be reduced by increasing the number of terms of the polynomial.271
I272

The exponent can be approximated by the exponent itself. An example is shown below in Figure273
7.????ð�??”ð�??”??_exp(??) ?= ð�??”ð�??” 0 + ð�??”ð�??” 1 ?? + ð�??”ð�??” 2 ?? 2 + ð�??”ð�??” 3 ?? 3274
(21)275

Figure 7 shows the values of these two functions -rjad_exp(x) and exp (x). ? ? ? ? ? ? ? ? ? ? ? ? ? ? =276
????????_??????(I277

The graph of the cos(x) function on the section from x = 4 to x = 6 and the initial data are shown below278
in Figure 8. Additionally, the application of differential integration functions in music, curves of equal loudness,279
for example, Fletcher-Manson curves or Robinson-Dudson curves, Figure 9, is presented. From the materials280
presented in the figures, it can be seen that for a given number of points, the approximation is satisfactory._cos281
x ( ) a 0 a 1 x ? + a 2 x 2 ? + a 3 x 3 ? + a 4 x 4 ? + a 5 x 5 ? + := (22) _cos (5) = 2,836622?10 -1 cos (5) =282
2,836622?10 -1 a A1 1 ? B1 ? := B1 cos µ 0.00 ? 2 ? + ? ? ? ? ? ? cos µ 0.25 ? 2 ? + ? ? ? ? ? ? cos µ 0.50 ?283
2 ? + ? ? ? ? ? ? cos µ 0.75 ? 2 ? + ? ? ? ? ? ? cos µ 1.00 ? 2 ? + ? ? ? ? ? ? cos µ 1.25 ? 2 ? + ? ? ? ? ?284
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := The set point -? k_1 1 1 10 6 ? ? + :=285
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9 IV. CONCLUSIONS

SL x k , n , ( ) x n k ? Î?” n 1 + ( ) ? Î?” n k ? 1 + ( ) := µ 5 := A1 1 µ 0.25 ? Î?” 1 ( ) ? Î?” 1 0.25 ? ( ) µ 0.5286
? Î?” 1 ( ) ? Î?” 1 0.5 ? ( ) µ 0.75 ? Î?” 1 ( ) ? Î?” 1 0.75 ? ( ) µ k_1 ? Î?” 1 ( ) ? Î?” 1 k_1 ? ( ) µ 1.25 ? Î?” 1287
( ) ? Î?” 1 1.25 ? ( ) µ µ 1 0.25 ? Î?” 2 0.25 ? ( ) µ 1 0.5 ? Î?” 2 0.5 ? ( ) µ 1 0.75 ? Î?” 2 0.75 ? ( ) µ 1 1 ? Î?”288
2 1 ? ( ) µ 1 1.25 ? Î?” 2 1.25 ? ( ) µ 2 2 µ 2 0.25 ? ? Î?” 3 0.25 ? ( ) 2 µ 2 0.5 ? ? Î?” 3 0.5 ? ( ) 2 µ 2 0.75 ? ?289
Î?” 3 0.75 ? ( ) 2 µ 2 1 ? ? Î?” 3 1 ? ( ) 2 µ 2 1.25 ? ? Î?”3? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?290
? ? ? ? ? ? ? ? ? ? ? := Year 2023 © 2023 Global Journ als_A _SL i j , ( ) SL x i n j ,0 , ( ) ?? ? ? ? ? ? ?291
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := x 2.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?292
? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := i 0 23 .. := SL x n ,293
k, ( ) x n k? Î?” n 1 + ( ) ? Î?” n k ? 1 + ( ) := 0 2 , 7, 11 , 12 , 14 , 16 , 17 , 19 , 21 , 22 , 23 , j 0 23294
.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? := Year 2023 ©2023295

9 IV. Conclusions296

Differential integral functions, this is the Riemann-Liouville differential integral, written in a convenient form, as297
a function of two variables ?? 7 There may be other parameters, for example, integration limits, constants, etc.298

: the usual argument x and the parameter k, which sets the multiplicity of the integral or the order of the299
derivative. These functions allow you to calculate the desired integral or derivative by substituting the parameter300
k into the established formula. The formula does not change, only one parameter changes. Classical tables of301
integrals and differentials are not required. Only tables of pre-prepared formulas of differential functions are302
used, which can be represented in simple calculations in the form of icons, and in the form of SL (x, k) functions303
in computer programs written in programming languages such as VBasic, C++, Excel, MathCad, Python, etc.304

These differential integral functions are of great practical importance, for example, they allow us to approximate305
a certain given function in the vicinity of the desired point (by the type of decomposition into a Taylor, Maclaurin,306
Fourier series or Z transformation) or on a segment. At the same time, the conditions of equality of not only307
the function itself, but also the selected derivatives and differentials, integer and fractional, are observed at the308
desired approximation points themselves.309

Examples of approximation of some elementary functions are shown, for example, using a standard polynomial.310
It is also possible to approximate trigonometric, power functions and their combinations.311

To simplify working with differential integral functions, they can be represented in two forms: for a graphic312
image-as a function with angle brackets, and for writing in the program text-as a function SL (x, k) of two or313
more arguments (Application B). Year 2023 The system consists of the polynomial cos (x) and its six fractional314
derivatives ki, with a maximum multiplicity of 1.25. The order of the derivatives of k changes after 0.25. Year315
2023 © 2023 Global Journ als ( ) I Below, as an example, is a table ??Table 1) with the results of calculating316
the differential functions on VBasic, where n is the exponent of the power function, and k is the parameter of317
the differential function. For k < 0 it is a fractional integral, k = 0 is the parent function, and for k > 0 it is a318
fractional derivative. Î?” 1 ( ) ? Î?” 1 0.25 ? ( ) µ 0.5 ? Î?” 1 ( ) ? Î?” 1 0.5 ? ( ) µ 0.75 ? Î?” 1 ( ) ? Î?” 1 0.75319
? ( ) µ k_1 ? Î?” 1 ( ) ? Î?” 1 k_1 ? ( ) µ 1.25 ? Î?” 1 ( ) ? Î?” 1 1.25 ? ( ) µ µ 1 0.25 ? Î?” 2 0.25 ? ( ) µ 1 0.5320
? Î?” 2 0.5 ? ( ) µ 1 0.75 ? Î?” 2 0.75 ? ( ) µ 1 1 ? Î?” 2 1 ? ( ) µ 1 1.25 ? Î?” 2 1.25 ? ( ) µ2 1 2 3 4 5321

12 Here SL(x, k) is another form of writing a power differential function, different from writing the formy
<k> .3 Here and further calculations are performed in the MathCad program, so it uses a dot in its formulas
instead of a comma.4 As the latter, there may be the differentialintegral functions themselves. In this case, the
parameter k can also be a complex value. 5 G(x) -gamma function.

2To approximate in this case, it is to decompose into a power series using differential integral functions in the
vicinity of the point x 0 , bearing in mind that these points are the values of the function f (x) = cos (x).

3© 2023 Global Journ als
4© 2023 Global Journ als ( )I Application of Differentialintegral Functions
52© 2023 Global Journ als
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