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  Summary-
 
The article is devoted to the development and implementation of new mathematical 

functions, differentialintegral functions that provide differentiation and integration operations not 
only according to existing algorithms described in textbooks on higher mathematics, but also by 
substituting a certain parameter k into formulas developed in advance, forming the necessary 
derivatives and integrals from these formulas.

 
The Purpose of the Research:

 
The expansion of the concept of number, in particular, in classical 

mechanics, physics, optics and other sciences, including biological and economic, which makes 
it possible to expand some understanding of the essence of space, time and their derivatives.

 
Materials and Methods:

 
The idea of fractional space, time and its application is given. The usual 

elementary functions and the Laplace transform were chosen as the object of research. New 
functions, differentialintegral functions, have been developed for them. A graphical 
representation of these functions is given, based on the example of the calculation of the sine 
wave. Examples of calculating these functions for elementary functions are given. 
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Application of Differentialintegral Functions
Alexey S. Dorokhov α, Solomashkin Alexey Alekseevich σ, Vyacheslav A. Denisov ρ                                      

& Kataev Yuri Vladimirovich Ѡ

Summary- The article is devoted to the development and implementation of new mathematical functions, differentialintegral 
functions that provide differentiation and integration operations not only according to existing algorithms described in textbooks 
on higher mathematics, but also by substituting a certain parameter k into formulas developed in advance, forming the necessary 
derivatives and integrals from these formulas. 

The Purpose of the Research: The expansion of the concept of number, in particular, in classical mechanics, physics, optics and 
other sciences, including biological and economic, which makes it possible to expand some understanding of the essence of 
space, time and their derivatives. 

Materials and Methods: The idea of fractional space, time and its application is given. The usual elementary functions and the 
Laplace transform were chosen as the object of research. New functions, differentialintegral functions, have been developed for 
them. A graphical representation of these functions is given, based on the example of the calculation of the sine wave. Examples 
of calculating these functions for elementary functions are given. Of particular interest is the differentialintegral function, in which 
the parameter k is a complex number s, s = a + i · b, although in general, the parameter k can be any function of a real or 
complex argument, as well as the differentialintegral function itself. 

Research Results: As a result of the research, it is shown how the Laplace transform and Borel's theorem are used to calculate 
differentialintegral functions. It is shown how to use these functions to carry out differentiation and integration. It is presented how 
fractional derivatives and fractional integrals should be obtained. Dependencies for their calculation are obtained. Examples of 
their application for such functions as cos(x), exp(x) and loudness curves in music, Fletcher-Manson or Robinson-Dadson curves 
are shown. 

Conclusions: Studies show the possibility of a wide application of differentialintegration functions in modern scientific research. 
These functions can be used both in office and in specialized programs where calculations of fractional derivatives and fractional 
integrals are needed. 
Keywords: differentialintegral functions, derivative, fractional derivative, integral, fractional integral. 

I. Introduction 

n modern sciences, such as mathematics, physics, astronomy, economics and other sciences, there is little use 
of differential functions in calculations, because with the help of fractional derivatives and integrals, very few 
physical, natural, social and other processes are described that use not only the first and second derivatives, 

single and double integrals, but fractional derivatives and fractional integrals. So in classical mechanics, the first 
derivative is used as velocity, the second as acceleration, and the third as a jerk. A one-time integral is used to 
calculate the area under the curve, the mass of an inhomogeneous body, a two–time integral is used to calculate the 
volume of a cylindrical beam, a three-time integral is used to calculate the volume of the body. 

They can be found in the equations of mathematical physics, where, in particular, generalized functions and 
convolutional operations on them are used, and in spectral analysis, and in operational calculus based on integral 
Fourier and Laplace transformations, and in many other methods where differentiation and integration of functions 
are used. 

The basis of all these concepts is the derivative and integral 1

                                                             
1 And also, definitions of derivatives/integrals based on such concepts as the Riemann-Liouville, Grunwald-Letnikov and Weyl differentialintegrals. 

. Two mathematical operations that are 
"opposite" to each other, like addition and subtraction, multiplication and division. Two "reciprocal" functions like 
sin(x) and arcsin(x), x2 and √𝑥𝑥, ex and ln(x). Two mathematical operations that logically complement each other, the 
derivative of the integral does not change the integrable function, as does the integral of the derivative, leaves it 
unchanged. 

Let us recall the symbols on graphs and in computer programs. Like any mathematical operation, they have 
their symbols (designations) on a piece of paper, like ordinary symbols on a computer screen. So, differentiation is 
denoted as y’ or d/dx, and integration is ∫𝑦𝑦(𝑥𝑥)𝑑𝑑𝑑𝑑. In this case, a one – time integral is denoted as ∫𝑦𝑦(𝑥𝑥)𝑑𝑑𝑑𝑑 , and a 
two - time integral is ∬𝑦𝑦(𝑥𝑥)𝑧𝑧(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. With the derivative, the situation is more complicated, it has two designations:  
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y' and d/dx. Figure 1 shows (as one of the options) the currently existing designations of differentials and integrals, 
widely used in the literature. 

 
 

 
 
  
 
 

 
 
 

 

Figure 1: Notation of integrals and derivatives 

As can be seen from Figure 1, all the variety of these notations has one property common to all: they try to 
reflect in various ways, either with the help of numbers or graphically, the order of derivatives or the multiplicity of the 
integral. 

In order to unify the record of derivatives and integrals, consider them relative to a certain numerical axis "K" 
(Figure 2), where the value of the parameter k corresponds to the multiplicity of the integral or the order of the 
derivative. So, in this scenario of notation, k = -1 corresponds to the designation of a single integral ∫𝑦𝑦(𝑥𝑥)𝑑𝑑𝑑𝑑 from 
the 2nd line and the designation of the same integral f 1*y from the 3rd row, and for k = 1- we have the designation 
of the first derivative y' from the 1st row and the designation of the same first derivative d /dx from the 2nd row. 

The third line contains the notation of differentials and integrals based on convolutional operations of 
generalized functions: y(k) = f -k * y, where k >0, a value unequal to an integer is called a fractional derivative of order 
k. An expression of the form: y(k) = f k * y is called a primitive of order k, i.e. an integral of multiplicity k [1]. 

<- 1> <- 0,46> <0> <+1> <+1,35> <+2>   y y y y y y
---|------------------x------------------|------------------------------|---------------x--------------------|--------> 
K- 1 - 0,46    0 + 1 + 1,35 + 2

--- ---    y y ' --- y ''
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⌠
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(1)  

                                                                                                                               (2)   
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Figure 2: Notation of derivatives and integrals for a parabolay(x) = x2 

At the same time, all derivatives, including fractional ones, having a negative index, are located on the 
numerical axis on the right, and all integrals with a positive index - on the contrary, on the left. It was possible to 
arrange the designations differently, change the plus to minus, but the essence would not change at the same time. 
There are many types of symbols, binding to the numeric axis requires clarification. 

To bring these notations in line with the numerical axis "K", the 4th line contains universal notations for 
derivatives of any order and integrals of any multiplicity, using angle brackets. 

The angle brackets denote the order of the derivative or the multiplicity of the integral, for example, y<0> = 
y(x) is the function under study, and y<-1> =∫𝑦𝑦(𝑥𝑥)𝑑𝑑𝑑𝑑 is its integral, multiplicity 1. So y<2>= d2/dx2 = y" is the second 
derivative, and y <-0,46> is the integral, multiplicity 0,46. For example, a certain derivative of the order of 1,35 is 
denoted as y <1,35>. In other words, if there is a positive number in the angle brackets, it means it is some kind of 
derivative, and if it is negative, it means it is an integral. And it is easy to read, and it is located correctly on the 
numeric axis: negative values of the k index are on the left, and positive values are on the right. This form of writing 
integrals and derivatives is very convenient, for example, for their designation on graphs or diagrams. 
Figure 2 shows an example of the notation of derivatives and integrals for the parabola y(x) = x2. 

In addition to notation on graphs, this method can be used for programmers writing programs in various 
programming languages, for example, 
... 
int main () { 
float y, u, z; 
int n3; 
... 
z= y (4) <1.5>; 
u=n3 <-0,25>; 
… 
where y <1,5> is the derivative of the function y(4) of order 1,5 and n3 <-0.25> is the integral of multiplicity 0,25 of the 
function n3. 
In Figure 2, the integral of multiplicity –0,46 and the derivative of the order of 1,35 are shown for x > 0. 

It should be borne in mind that when calculating a derivative of a "high" order, say, 123 orders – y <123>, 
previously it was necessary to perform 122 differentiation operations beforehand. This is due to the fact that the 
definition of the derivative/integral implies an increase in the order of the derivative/integral by only 1. It is impossible, 
using the existing definition of the derivative, to immediately calculate a high-order derivative from it. Only with the 

y1 = y< - 1>

1,35

2,0

1,0

0,0
- 0,46

- 1,0

k

x
x

x

x
x

x

y2 = y< - 0,46 >
y3 = y<0>

y4 = y< 1>
y5 = y< 1,35 >

y6 = y< 2 >

y< - 1> = x3/3
y< - 0,46> = 0,62x2,46

y<0> = x2

y<1> = 2x
y<1,35> = 2,22x0,65

y<2> = 2
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help of sequential multiple calculations can the order of the derivative be increased to the desired value. The same 
applies to integration. 

II. Materials and Methods 

This method of calculating derivatives reduces the efficiency of using the differentiation operation, for 
example, in series expansions, because it requires calculating derivatives of a "high" order, and this is time-
consuming and involves calculation errors. Therefore, in such calculations, only the first few terms of the 
decomposition are taken, and the rest are discarded, which increases the calculation error. 

As for calculating integrals, especially multiplicities greater than 2, this is an even more difficult task. Thus, 
the lack of a simple, reliable and accurate method of differentiation and/or integration significantly hinders 
computational progress in mathematics. 

The same problem is observed in physics. Many laws of mathematical physics, most often appearing in 
simple, accessible calculations, are based on the use, mainly, of the 1st, maximum 2nd derivative (for example, 
current i = dq / dt, force F = m · d2x/ dt2) and a single integral, for example, voltage across the capacitor u(t) = 1 / C 
·∫ 𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑. 

It is very rare in everyday physics or mathematics to find a 3rd derivative or a 3-fold integral. This does not 
happen often. One of the ways to use a 3-fold integral is the Ostrogradsky-Gauss integral to calculate the volume of 
a body if the surface bounding this body is known. 

And if you look more broadly, then neither in physics nor in mathematics have the everyday laws of the 
universe using fractional derivatives and integrals been discovered so far, because their calculation is fraught with 
great difficulties [1]. At the same time, it is possible that all the diversity of the world exists exactly there, in a 
fractional dimension, which can be described and studied, precisely with the help of fractional (analog), and not 
integer (discrete) integrals and differentials. 

Take, for example, the mechanism of describing multidimensional structures, for example, multidimensional 
space. Our 3-dimensional space and one-dimensional time are described by discrete (integer) coordinate values, in 
this case one and three. At the same time, the question of the existence of a space having, not 3, but, say, 2,345 
coordinates is of great scientific and practical interest. In other words, the structure of a special "fractional" space, no 
longer two-dimensional, is a plane (because to describe the plane, you need 2 coordinates, and we have more – 
2,345), but also not a three-dimensional volume (where 3 coordinates are needed), i.e. something average between 
the plane and the volume. It is very difficult to imagine such a structure. In nature, such a space does not seem to 
exist. 

It is even more difficult to determine the velocity or acceleration in such a space, i.e. to describe the 
kinematics of the motion of bodies. If it is possible to define the force in such a space (or to use the already existing 
classical method of specifying forces), then we can count on success in creating the dynamics of such structures, 
i.e., in other words, to create the mechanics of multidimensional space. At the same time, our classical 3-
dimensional mechanics will turn out to be a special case of a more general mechanics – the mechanics of 
multidimensional spaces. This can be said about other physical laws of the universe. 

And whether our idea of the world will change with the emergence of a new, more general, idea of space. 
So far we don't know much about this, because our concepts are tied to a three-dimensional dimensional space, 
and all the diversity of the world "lies" in a multidimensional "fractional" world that has not been studied at all. 
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A number of legitimate questions arise:
- What kind of space is "located", say, between a plane (2-dimensional space) and a volume (3-dimensional), i.e. 

a substance with the dimension of space R, where 2<R <3?
- What kind of physical quantity, which is between speed and acceleration between y <1> and y <2> from the 

move, i.e. a physical quantity, defined, for example, the fractional derivative of y <1,23>, the order of 1,23 (not 1 or 
2)?

- Whether Newton's laws are applicable to the so-called fractional space?
- How will the definition of force in fractional space change (if it changes)?
- Will it be possible to apply the classical laws of mechanics to fractional space, or will it be necessary to create a 

new, more general, mechanics of the macro and microcosm?
- Will the interaction between space and time change if we "replace" the classical concept of space with a 

fractional one?
- Will there be changes in Einstein's theory of relativity and will the concepts of "gravitational, electromagnetic and 

other interactions" and much, much more remain the same?

Answers to these and other questions can be obtained if you have a convenient apparatus for calculating 
derivatives/integrals of any order/multiplicity, including fractional ones. In other words, it is necessary to create such 
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a calculation algorithm, simple and convenient, especially for novice researchers, where instead of calculating 
integrals/differentials, it would be possible to use the usual substitution of numbers, in which the desired order or 
multiplicity could be set without performing calculations, but simply substitute the desired parameter into the desired 
formula and get a ready derivative/integral without their calculations, i.e. immediately. Such a tool, which could be 
called, for example, functions - SL(x, k), would greatly simplify the process of calculating derivatives and integrals 
and significantly expand the boundaries of our knowledge.

First, we introduce the concepts of a differential integral function based on the definition of a differential 
integral. The differential integral function SL (x, k) is an ordinary function of several arguments, where, separated by 
commas, its arguments (in this case one – x) and the parameter k, the order of future derivatives and/or the 
multiplicity of integrals are indicated2

For example, for a parabola y(x) = x2, such a differentialintegral function SL(x, k) will have the form
.

3

This is the differential integral function of a parabola, the usual function of 2 arguments, argument x and 
parameter k. It represents a whole set of integrals and derivatives of any order and multiplicity

.

                                                                                                                                                        (1)

where, x is the argument of the function,
k is a parameter that specifies the order of the derivative or the multiplicity of the integral.

4

For example, for a parabola, we substitute k = 0 into it. Then, for k = 0y (x, k) = x2, (Г (3 - k) = 2)

(the main, mother 
function). How to use it? You need to set the parameter k and get the desired derivative or integral.

5

                                                            
2 Here SL(x, k) is another form of writing a power differential function, different from writing the formy<k>.
3 Here and further calculations are performed in the MathCad program, so it uses a dot in its formulas instead of a comma.
4 As the latter, there may be the differentialintegral functions themselves. In this case, the parameter k can also be a complex value.
5 G(x) - gamma function.

the 
function (parabola) does not change. When k = 1y (x, k) = 2x and the parabola is transformed into its 1st derivative -
y <1>. When k = -1 y (x, k) = x3/3 and the function becomes its one-time integral –y <-1>, and for k = -2 y (x, k) = 
x4/12 - double - y <-2>. No calculations, just substitution.

Fractional derivatives and integrals are of particular interest, because there is no simple and reliable way to 
calculate them, except for the method indicated above [2]. In this case, the method of obtaining is the same. To 
calculate them, it is enough to substitute the necessary value of the derivative instead of the parameter k, for 
example, k = 0.123 and the parabola becomes its derivative of the order 0.123 – y <0.123>:

                                                                                                                 (2)

If it is necessary to obtain an integral of multiplicity 3,45 - y <-3,45>, it is enough to substitute k = -3,45 into the 
differential function (1) and the parabola becomes its integral of multiplicity 3,45 - y <-3,45>:

                                                                                                           (3)

This method of calculating fractional derivatives is no different from the method of obtaining integer 
(discrete) derivatives – the same substitution. There is no difference between an integer or fractional 
derivative/integral. Simple substitution to get a given result.

Consider another example: y(x)=sin(x). For a sine wave, the differentialintegral function SL(x,k) will have the
following form:

                                                                                                                                               (4)

This is a sine wave whose phase shift depends on the order of its derivative/multiplicity of its integral. At k = 
0, the sine wave does not change, at k = 1, and becomes cos(x), i.e. its the first derivative is y <1>, and at k = -1 it 
becomes -cos(x), i.e. its integral is y <-1>.. At -1<k <1, the function occupies an intermediate position between -
cos(x) and cos(x), including sin(x) at k = 0.

The differential integral function for the sine wave (4) is a graphical representation of the differential integral 
function, namely, the parameter k represents a part of the right angle for unit orts. At k = 1, the function SL(x,1)
becomes the 1st derivative, such a unit ort is perpendicular to the abscissa axis, and at k = var it is a fractional 
derivative of k order and the angle k (in values from 0 to 1 or in % of 90 degrees) it is only a part of the right angle.

For the exponent y(x) = ex, the differential integral function SL(x, k) does not depend on k and all its 
derivatives and integrals are equal to each other and equal to the exponent itself.

𝑆𝑆𝑆𝑆(𝑥𝑥,𝑘𝑘) ≔ 2 ∙ 𝑥𝑥2−𝑘𝑘

Г(3−𝑘𝑘)

𝑆𝑆𝑆𝑆(𝑥𝑥,𝑘𝑘) ≔ 2 ∙ 𝑥𝑥2−0,123

Г(3−0,123) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡, 3 → 1,12        

𝑆𝑆𝑆𝑆(𝑥𝑥,𝑘𝑘) ≔ 2 ∙ 𝑥𝑥2+3,45

Г(3+3,45) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡, 3 → 7,6060−3𝑥𝑥5,4                            

𝑆𝑆𝑆𝑆(𝑥𝑥,𝑘𝑘) ∶= sin (𝑥𝑥 + 𝑘𝑘 ∙ 𝜋𝜋
2
)



These examples can be summarized in Table 1, where its derivatives and integrals are given for some 
elementary functions. 

Table 1: Examples of calculation of derivatives and integrals

y<- 1> y<- 0.5> y<0> y<0.5> y<1.5> SL (x, k) 

Γ (n+2) 
Γ (n+1) xn+1 

Γ (n+1,5) 
Γ (n+1) xn+0,5 

xn Γ (n+0,5) 
Γ (n+1) xn-0,5 

Γ (n-0,5) 
Γ (n+1) xn-1,5 

Γ (n+1-k) 
Γ (n+1) xn-k 

x3/3 0,601x2.5 x2 1,504x1.5 2,256x0.5 Γ (3-k) 
2 x2-k 

ex ex ex ex ex ex 

sin(x-π/2) sin(x-0,5·π/2) sin(x) sin(x+0,5·π/2) sin(x+1,5·π/2) sin (x+k·π/2) 
 

Differential functions can be a function of 2 or more arguments, for example, SL (x, y, k), where (x) and (y) 
are two arguments of the same function: SL (x, y, kx, ky) = 2 · ky + (x – y) · kx, and kx and ky- are still a parameter. In 
addition, any continuous elementary function can be used as a parameter, including the same differential integral 
function, for example: 

(𝑥𝑥,𝑦𝑦, 𝑘𝑘1,𝑘𝑘2) ≔ 𝑥𝑥sin �𝑦𝑦 ∙𝑘𝑘1+ 𝜋𝜋2𝑘𝑘2�                                                                                                                                        (5) 

Of particular interest is the differential integral function, in which the parameter k is a complex number s, s = 
a + i · b, although in general, the parameter k can be any function of a real or complex argument. 

III. Research Results 

To obtain the differential integral function, we recall the Laplace integral transformation and Borel's theorem. 

The integral Laplace transform has the form 

𝐿𝐿[𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑠𝑠) =  ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 ≡ [𝑓𝑓(𝑡𝑡) ∙ 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑]<−1>0<𝑡𝑡<∞
∞

0                                                                                        (6) 

where s = a + i * b is a complex quantity. Here f (t) is the original function, and F(s) is its Laplace image. This is a 
direct conversion of the original into an image. The inverse Laplace transform               

(7)

 

𝑓𝑓(𝑡𝑡) ≔  
1

2𝜋𝜋𝜋𝜋 ∙
� 𝑒𝑒𝑠𝑠𝑠𝑠𝐹𝐹(𝑠𝑠)𝑑𝑑𝑑𝑑  ≡  [𝑒𝑒𝑠𝑠𝑠𝑠 ∙ 𝐹𝐹(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑]<−1>𝜎𝜎−𝑖𝑖∞<𝜎𝜎+𝑖𝑖∞
𝜎𝜎+𝑖𝑖 ∙∞

𝜎𝜎−𝑖𝑖∙∞

it is necessary to find the original of the function by its image. 

Let's consider one of the main properties of this transformation – the differentiation of the original function. 
Let L[f(t)] = F (s). Let's find L[f(t)<1>], where f(t)<1>- is the 1st derivative, and L[f (t)<1>]- is its image. 

𝐿𝐿[𝑓𝑓(𝑡𝑡)<1>] = [𝑓𝑓(𝑡𝑡)<1> ∙ 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑]<−1>0<𝑡𝑡<∞ = 𝑒𝑒−𝑠𝑠𝑠𝑠 ∙ 𝑓𝑓(𝑡𝑡)0 <𝑡𝑡< ∞ +  𝑠𝑠 ∙ [ 𝑓𝑓(𝑡𝑡) ∙ 𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑]<−1>0 <𝑡𝑡< ∞                                        (8) 

    
  

L [f (t) <1>] = s * F (s) – f (0)                                                                                                                                           (9) 

For f (0) = 0 

L [f (t) <1>] = s * F(s)                                                                                                                                                    (10) 

and the differentiation of the original function corresponds to the multiplication of the image of the function by s. Let's 
consider another important property – the integration of the original. 

If g(t) = [f(τ)dτ]<-1>
0<τ<t,then under zero initial conditions g (t) <1> = f (t) and 

L[g(t)<1>] = L[f(t)] = s * L[g(t)] = s * L[[f(τ) dτ] <-1>
0 <τ< t]                                                                                          (11) 

Since L[f(t)] = F (s), then 

L [[f (τ)* dτ] <-1>
0<τ<t  = F(s)/s                                                                                                                                     (12) 

that is, the integration of the function corresponds to the division of the image F (s) by s. 

If for t→∞ the function f (t) increases no faster than M * eat, then
e-st * f (t) →0 for t→∞ and is equal to f (0), and
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Taking into account expressions (14) and (16), we can conclude that the operations of 
differentiation/integration of the original can be replaced by algebraic actions (multiplication/division by s) on their 
images [3]. Thanks to this replacement, this method has found the widest application in integral and differential 
calculus [4]. 

However, the case is of particular interest when the function is represented as 

L [f (t)] = F(s)/(s-k)                                                                                                                                                         (13) 

that is, the image is divided by (s-k). In this case, depending on k, we get fractional derivatives/integrals. For k> 0, 
fractional derivatives of the order k are formed, and for k <0, fractional integrals of the same multiplicity are formed. 

𝐿𝐿[𝑓𝑓(𝑡𝑡)] = F(s)
𝑠𝑠−𝑘𝑘

= 1/(Г(−𝑘𝑘))                                                                                                                                          (14) 

SL (x, k) = L [f (t)]                                                                                                                                                         (15) 

  
Let's consider some examples of the use of differential integral functions in solving approximation problems. 

Suppose must be approximated by a power series ряд_cos(x) in a neighborhood of the point x0, the function cos(x), 
and choose the polynomial coefficients a0...a5 so as to minimize the mean square error of approximation of this 
polynomial are: 

_cos(x) = a0 + a1∙x + a2∙x2+ a3∙x3 + a4∙x4 + a5∙x5                                                                                                        (16) 

and at the selected point is known for its derivatives and differentials, as an integer and the fraction. 

To do this, we fulfill the approximation conditions according to which the value of the polynomial _cos(x) and 
its fractional derivatives (for simplicity of calculation, only six (5) derivatives are used6

                                                             
6 To approximate in this case, it is to decompose into a power series using differential integral functions in the vicinity of the point x0, bearing in 
mind that these points are the values of the function f (x) = cos (x). 

. To increase the accuracy, you 
can use more, for example, several dozen derivatives, the computer allows it. Instead of derivatives, its integrals can 
also be used in the same way) in the vicinity of a given point x0, from the domain of the polynomial definition, should 
equal the corresponding values of the desired function cos(x) and its fractional derivatives (and integrals). 2 points 
are selected as points – x = 3 and x = 15. 

The fractional derivatives/integrals for the elements of the polynomial are defined as 

𝑆𝑆𝑆𝑆(𝑥𝑥,𝑛𝑛,𝑘𝑘) ≔ Г(𝑛𝑛+1)∙𝑥𝑥𝑛𝑛−𝑘𝑘

Г(𝑛𝑛+1−𝑘𝑘)
                                                                                                                                               (17) 

where x -is the matrix of diagnostic information; 
n - is the exponent of the polynomial; 
k- is a parameter that sets the multiplicity of the integral or the order of derivatives. 

Further, solving a linear algebraic equation of the form: 

                                                                                                                                                                   (18) 

we obtain the solution of this equation in the form of the desired coefficients a0...a5 (Application A Figure A.1). 

The solution was made in the MathCad program, the calculation listing is given for the point x = 3 and 
additionally for x = 15. 

Another example. In addition to the approximation at a point, using the differential integral functions, it is 
possible to approximate on a given segment. Examples of this approximation are given below. 

Let it be necessary to approximate, for simplicity, the known functions cos (x) and the exponent exp(x), as 
well as cos(x) on the plot 4 <x <6, as well as volume curves, according to the type of Fleicher-Manson or Robinson-
Dadson curves. For ease of calculation, we approximate 6 points for 2 cos (x) functions, 4 (four) points for the 
exponent exp(x) and 23 for volume curves. 

For a sine wave, the desired points will be of two types. In the first case, these are the points -5, -4, -2, 1, 3, 
5. In the second case, this is -5, -3, -1, 1, 3, 5. 
We will approximate the sinusoid with a polynomial (17). 

Exponent – exponent. 
 

These expressions (18) and (19) define fractional derivatives/integrals of order k, and are the differential 
functions of the desired function f(t). Examples of these functions are shown in Table 1.

a =A1-1·B1

© 2023    Global Journ als 
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For the first case, for points -5, -4, -2, 1, 3, 5 the initial data obtained by formula (17) will have the following form. 

 

As a result of calculating the series rjad_cos (x), we get the values of cos (x). 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (𝑥𝑥) ≔ 𝑏𝑏20 + 𝑏𝑏21 + 𝑏𝑏22 ∙ 𝑥𝑥2 + 𝑏𝑏23 ∙ 𝑥𝑥3 + 𝑏𝑏24 ∙ 𝑥𝑥4 + 𝑏𝑏25 ∙ 𝑥𝑥5                                                                     (19)
 

The graphs of these two functions cos (x)
 
and rjad_1_cos(x) and some values of these graphs are shown in Figure 3.

 
 

Figure 3:
 
Values of the functions-rjad_1_cos (x)

 
and cos (x)

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (−5) = 0.284
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (−4) = −0.654
 

cos(−5) = 0.284
 

cos(−4) = −0.284
 

  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (−2) = −0.416
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (−1) = 0.54
 

cos(−2) = −0.416
 

cos(−1) = 0.54
 

  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (3) = −0.99
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1_cos (5) = 0.284
 

cos(3) = −0.99
 

cos(5) = 0.284
 

 

 

 

 

 

 

 

 

 

 

 

 

b2

0.615

0.207

0.257−

0.036−

9.731 10 3−
×

1.117 10 3−
×





















=

5− 0 5

2−

1−

1

2

rjad_1_cos x( )

cos x( )

2− 3

x

   A2

1

1

1

1

1

1

5−

4−

2−

1

3

5

25

16

4

1

9

25

125−

64−

8−

1

27

125

625

256

16

1

81

625

3125−

1024−

32−

1

243

3125



















:= B2

cos 5−( )

cos 4−( )

cos 2−( )

cos 1( )

cos 3( )

cos 5( )



















:= b2 A2 1− B2⋅:=
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For another cosine, for the values -5, -3, -1, 1, 3, 5 the initial data obtained by the formula (17) will have the 
following form: 

 

 
 
 

 
 
 
 
 
 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_ cos(𝑥𝑥) ≔ 𝑑𝑑0 + 𝑑𝑑1𝑥𝑥 + 𝑑𝑑2𝑥𝑥2 + 𝑑𝑑3𝑥𝑥3 + 𝑑𝑑4𝑥𝑥4 + 𝑑𝑑5𝑥𝑥5                                                                                          (20) 

The graphs of these two functions cos (x) and rjad_2_cos(x) and some values of these graphs are shown in Figure 4.  

Figure 4: Values of the functions - rjad_2_cos (x) and cos (x) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_cos (−5) = 0.284
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_cos (1) = 0.54
 

cos(−5) = 0.284
 

cos(1) = 0.54
 

  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_cos (−3) = −0.99
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_cos (−3) = −0.99
 

cos(−3) = −0.99
 

cos(3) = −0.99
 

  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_cos (−1) = 0.54
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2_cos (5) = 0.284
 

cos(−1) = 0.54
 

cos(5) = 0.284
 

 

If we look at the same graphs in other coordinates, we can say that at these points the graphs coincide with 
their values, and at other points they do not, and they differ significantly. 

A3

SL _x0 _n0, 0, ( )
SL _x1 _n0, 0, ( )
SL _x2 _n0, 0, ( )
SL _x3 _n0, 0, ( )
SL _x4 _n0, 0, ( )
SL _x5 _n0, 0, ( )

SL _x0 _n1, 0, ( )
SL _x1 _n1, 0, ( )
SL _x2 _n1, 0, ( )
SL _x3 _n1, 0, ( )
SL _x4 _n1, 0, ( )
SL _x5 _n1, 0, ( )

SL _x0 _n2, 0, ( )
SL _x1 _n2, 0, ( )
SL _x2 _n2, 0, ( )
SL _x3 _n2, 0, ( )
SL _x4 _n2, 0, ( )
SL _x5 _n2, 0, ( )

SL _x0 _n3, 0, ( )
SL _x1 _n3, 0, ( )
SL _x2 _n3, 0, ( )
SL _x3 _n3, 0, ( )
SL _x4 _n3, 0, ( )
SL _x5 _n3, 0, ( )

SL _x0 _n4, 0, ( )
SL _x1 _n4, 0, ( )
SL _x2 _n4, 0, ( )
SL _x3 _n4, 0, ( )
SL _x4 _n4, 0, ( )
SL _x5 _n4, 0, ( )

SL _x0 _n5, 0, ( )
SL _x1 _n5, 0, ( )
SL _x2 _n5, 0, ( )
SL _x3 _n5, 0, ( )
SL _x4 _n5, 0, ( )
SL _x5 _n5, 0, ( )

























:=

d A3 1− B3⋅:=

5− 0 5

2−

1−

1

2

cos x( )

rjad_2_cos x( )

3− 1

x

  B3

cos 5−( )

cos 3−( )

cos 1−( )

cos 1( )

cos 3( )

cos 5( )



















:= _x

5−

3−

1−

1

3

5



















:=
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Figure 5: Values of the functions-rjad_1_cos (x) and cos (x) 

The values of these two functions-rjad_1_cos(x) and cos (x) in other coordinate systems coincide only in this 
section in ± 2π, and for other values of the argument they differ greatly. 
Figure 6 shows the values of these two functions rjad_2_cos(x) and cos (x). 

In the given figure shows that the values of these two functions rjad_2_cos(x) and cos (x) in different 
coordinate systems coincide only in this region of ± 6, and for other values of the argument vary greatly. 

This suggests that approximation by differential integral functions is possible both at a point and at a certain 
area. The approximation error is minimal and can be reduced by increasing the number of terms of the polynomial. 

 

Figure 6: Values of the functions-rjad_2_cos (x) and cos (x) 

 

 

 

 

 

 

 

 

 

 

 

 

10− 0 10

10−

10

rjad_1_cos x( )

cos x( )

2− 3

x

10− 0 10

10−

10

cos x( )

rjad_2_cos x( )

3− 1

x
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The exponent can be approximated by the exponent itself. An example is shown below in Figure 7. 

 

 
 
 

 
 
 

 

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ exp(𝑥𝑥) ∶= 𝑎𝑎0 + 𝑎𝑎1
 
𝑥𝑥 +

 
𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3                                                                                                                  

 
(21)

 

 
  

  

  

  

Figure 7 shows the values of these two functions - rjad_exp(x)
 
and exp (x).

 
 

Figure 7:
 
Values of the functions - rjad_exp (x) and exp (x)

 

 
 
 
 
 
 
 
 
 
 
 

k 1 2 7 10( )T:=

ek

2.718

7.389

1.097 103
×

2.203 104
×













=

5 10 15

2 104×

4 104×

rjad_exp x( )

ex

x

     

 
    

n 0 1 2 3

A1

10

20

70

100

11

21

71

101

12

22

72

102

13

23

73

103















:= B1

e1

e2

e7

e10















:= a A1 1− B1⋅:= a

1.19− 103
×

1.966 103
×

863.71−

89.924













=

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒 (1) = 2.718 𝑒𝑒1 = 2.718

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒 (2) = 7.389 𝑒𝑒2 = 7.389

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒 (7) = 1.097 × 103 𝑒𝑒7 = 1.097 × 103

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒 (10) = 2.203 × 104 𝑒𝑒10 = 2.203 × 104
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The graph of the cos(x) function on the section from x = 4 to x = 6 and the initial data are shown below in Figure 8. 

 
 
 
 
 
 
 
 
 
 

 

   

 
 
 
 
 
 

 

 

_cos x( ) a0 a1 x⋅+ a2 x2
⋅+ a3 x3

⋅+ a4 x4
⋅+ a5 x5

⋅+:=
                                                                                                      (22) 

 _cos (5) = 2,836622·10-1 
  

cos (5) = 2,836622·10-1
 

a A1 1− B1⋅:=

B1

cos µ 0.00
π

2
⋅+





cos µ 0.25
π

2
⋅+





cos µ 0.50
π

2
⋅+





cos µ 0.75
π

2
⋅+





cos µ 1.00
π

2
⋅+





cos µ 1.25
π

2
⋅+







































:=

The set point - μ  
  

 

 
 

k_1 1 1 10 6−
⋅+:= SL x k, n, ( )

xn k−
Γ n 1+( )⋅

Γ n k− 1+( )
:=

µ 5:=

A1

1

µ
0.25−

Γ 1( )⋅

Γ 1 0.25−( )

µ
0.5−

Γ 1( )⋅

Γ 1 0.5−( )

µ
0.75−

Γ 1( )⋅

Γ 1 0.75−( )

µ
k_1−

Γ 1( )⋅

Γ 1 k_1−( )

µ
1.25−

Γ 1( )⋅

Γ 1 1.25−( )

µ

µ
1 0.25−

Γ 2 0.25−( )

µ
1 0.5−

Γ 2 0.5−( )

µ
1 0.75−

Γ 2 0.75−( )

µ
1 1−

Γ 2 1−( )

µ
1 1.25−

Γ 2 1.25−( )

µ
2

2 µ
2 0.25−

⋅

Γ 3 0.25−( )

2 µ
2 0.5−

⋅

Γ 3 0.5−( )

2 µ
2 0.75−

⋅

Γ 3 0.75−( )

2 µ
2 1−

⋅

Γ 3 1−( )

2 µ
2 1.25−

⋅

Γ 3 1.25−( )

µ
3

6 µ
3 0.25−

⋅

Γ 4 0.25−( )

6 µ
3 0.5−

⋅

Γ 4 0.5−( )

6 µ
3 0.75−

⋅

Γ 4 0.75−( )

6 µ
3 1−

⋅

Γ 4 1−( )

6 µ
3 1.25−

⋅

Γ 4 1.25−( )

µ
4

24 µ
4 0.25−

⋅
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⋅

Γ 6 0.25−( )

120 µ
5 0.5−
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Γ 6 1−( )
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⋅
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
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
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Figure 8: Values of the functions  –  cos(x) and _cos (x) 

Additionally, the application of differential integration functions in music, curves of equal loudness, for 
example, Fletcher-Manson curves or Robinson-Dudson curves, Figure 9, is presented. 

 
 

 

_A

_SL i j, ( ) SL xi nj, 0, ( )←

i 0 11..∈for

j 0 11..∈for:=

 

 
 
 
 

             

 

4 4.5 5 5.5 6

1−

0.5−

0.5

1

cos x( )

_cos x( )

x

KRG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0
1
2
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=

a __A 1−
( ) B⋅:=

n
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9
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11


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
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
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
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

:= x
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6.685
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7.378

7.824

8.055

8.517

8.987
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































:= y

119
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79.7
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77.9
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91.7

85.4

































:=

 
  

 

 

   
i 0 23..:=

SL x n, k, ( )
xn k−

Γ n 1+( )⋅

Γ n k− 1+( )
:= 0 2, 7, 11, 12, 14, 16, 17, 19, 21, 22, 23, j 0 23..:=

k 0:=
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rjad x( ) a0 a1 x⋅+ a2 x2
⋅+ a3 x3

⋅+ a4 x4
⋅+ a5 x5

⋅+ a6 x6
⋅+ a7 x7

⋅+ a8 x8
⋅+ a9 x9

⋅+ a10 x10
⋅+ a11 x11

⋅+:=                     (23) 

__A

SL x0 n0, k, 

( )SL x1 n0, k, 

( )SL x2 n0, k, 

( )SL x3 n0, k, 

( )SL x4 n0, k, 

( )SL x5 n0, k, 

( )SL x6 n0, k, 

( )SL x7 n0, k, 

( )SL x8 n0, k, 

( )SL x9 n0, k, 

( )SL x10 n0, k, 

( )SL x11 n0, k, 

( )

SL x0 n1, k, 

( )SL x1 n1, k, 

( )SL x2 n1, k, 

( )SL x3 n1, k, 

( )SL x4 n1, k, 

( )SL x5 n1, k, 

( )SL x6 n1, k, 

( )SL x7 n1, k, 

( )SL x8 n1, k, 

( )SL x9 n1, k, 

( )SL x10 n1, k, 

( )SL x11 n1, k, 

( )

SL x0 n2, k, 

( )SL x1 n2, k, 

( )SL x2 n2, k, 

( )SL x3 n2, k, 

( )SL x4 n2, k, 

( )SL x5 n2, k, 

( )SL x6 n2, k, 

( )SL x7 n2, k, 

( )SL x8 n2, k, 

( )SL x9 n2, k, 

( )SL x10 n2, k, 

( )SL x11 n2, k, 

( )

SL x0 n3, k, 

( )SL x1 n3, k, 

( )SL x2 n3, k, 

( )SL x3 n3, k, 

( )SL x4 n3, k, 

( )SL x5 n3, k, 

( )SL x6 n3, k, 

( )SL x7 n3, k, 

( )SL x8 n3, k, 

( )SL x9 n3, k, 

( )SL x10 n3, k, 

( )SL x11 n3, k, 

( )

SL x0 n4, k, 

( )SL x1 n4, k, 

( )SL x2 n4, k, 

( )SL x3 n4, k, 

( )SL x4 n4, k, 

( )SL x5 n4, k, 

( )SL x6 n4, k, 

( )SL x7 n4, k, 

( )SL x8 n4, k, 

( )SL x9 n4, k, 

( )SL x10 n4, k, 

( )SL x11 n4, k, 

( )

SL x0 n5, k, 

( )SL x1 n5, k, 

( )SL x2 n5, k, 

( )SL x3 n5, k, 

( )SL x4 n5, k, 

( )SL x5 n5, k, 

( )SL x6 n5, k, 

( )SL x7 n5, k, 

( )SL x8 n5, k, 

( )SL x9 n5, k, 

( )SL x10 n5, k, 

( )SL x11 n5, k, 

( )

SL x0 n6, k, 

( )SL x1 n6, k, 

( )SL x2 n6, k, 

( )SL x3 n6, k, 

( )SL x4 n6, k, 

( )SL x5 n6, k, 

( )SL x6 n6, k, 

( )SL x7 n6, k, 

( )SL x8 n6, k, 

( )SL x9 n6, k, 

( )SL x10 n6, k, 

( )SL x11 n6, k, 

( )

SL x0 n7, k, 

( )SL x1 n7, k, 

( )SL x2 n7, k, 

( )SL x3 n7, k, 

( )SL x4 n7, k, 

( )SL x5 n7, k, 

( )SL x6 n7, k, 

( )SL x7 n7, k, 

( )SL x8 n7, k, 

( )SL x9 n7, k, 

( )SL x10 n7, k, 

( )SL x11 n7, k, 

( )

SL x0 n8, k, 

( )SL x1 n8, k, 

( )SL x2 n8, k, 

( )SL x3 n8, k, 

( )SL x4 n8, k, 

( )SL x5 n8, k, 

( )SL x6 n8, k, 

( )SL x7 n8, k, 

( )SL x8 n8, k, 

( )SL x9 n8, k, 

( )SL x10 n8, k, 

( )SL x11 n8, k, 

( )

SL x0 n9, k, 

( )SL x1 n9, k, 

( )SL x2 n9, k, 

( )SL x3 n9, k, 

( )SL x4 n9, k, 

( )SL x5 n9, k, 

( )SL x6 n9, k, 

( )SL x7 n9, k, 

( )SL x8 n9, k, 

( )SL x9 n9, k, 

( )SL x10 n9, k, 

( )SL x11 n9, k, 

( )

SL x0 n10, k, 

( )SL x1 n10, k, 

( )SL x2 n10, k, 

( )SL x3 n10, k, 

( )SL x4 n10, k, 

( )SL x5 n10, k, 

( )SL x6 n10, k, 

( )SL x7 n10, k, 

( )SL x8 n10, k, 

( )SL x9 n10, k, 

( )SL x10 n10, k, 

( )SL x11 n10, k, 

( )

SL x0 n11, k, 

( )SL x1 n11, k, 

( )SL x2 n11, k, 

( )SL x3 n11, k, 

( )SL x4 n11, k, 

( )SL x5 n11, k, 

( )SL x6 n11, k, 

( )SL x7 n11, k, 

( )SL x8 n11, k, 

( )SL x9 n11, k, 

( )SL x10 n11, k, 

( )SL x11 n11, k, 

( )







:=
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Figure 9: Curves of equal loudness _y, dB and a curve approximating them rjad( x), Hertz 

From the materials presented in the figures, it can be seen that for a given number of points, the 
approximation is satisfactory. 

IV. Conclusions 

Differential integral functions, this is the Riemann-Liouville differential integral, written in a convenient form, 
as a function of two variables7

                                                             
7 There may be other parameters, for example, integration limits, constants, etc. 

: the usual argument x and the parameter k, which sets the multiplicity of the integral 
or the order of the derivative. These functions allow you to calculate the desired integral or derivative by substituting 
the parameter k into the established formula. The formula does not change, only one parameter changes. Classical 
tables of integrals and differentials are not required. Only tables of pre-prepared formulas of differential functions are 
used, which can be represented in simple calculations in the form of icons, and in the form of SL (x, k) functions in 
computer programs written in programming languages such as VBasic, C++, Excel, MathCad, Python, etc. 

These differential integral functions are of great practical importance, for example, they allow us to 
approximate a certain given function in the vicinity of the desired point (by the type of decomposition into a Taylor, 
Maclaurin, Fourier series or Z transformation) or on a segment. At the same time, the conditions of equality of not 
only the function itself, but also the selected derivatives and differentials, integer and fractional, are observed at the 
desired approximation points themselves. 

Examples of approximation of some elementary functions are shown, for example, using a standard 
polynomial. It is also possible to approximate trigonometric, power functions and their combinations. 

To simplify working with differential integral functions, they can be represented in two forms: for a graphic 
image-as a function with angle brackets, and for writing in the program text-as a function SL (x, k) of two or more 
arguments (Application B). 
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Application A 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

   
  

 
   

 

 
 

 

 

 

 

 

 

 

 

 

      _cos (3) = -9,899925 x 10-1

cos (3) = -9,899925 x 10-1

k = 0 ->

k = 0,25 ->

k = 0,50 ->

k = 0,75 ->

k = 1,00 ->

k = 1,25 ->

The set point - μ

k_1 1 1 10 6−
⋅+:=

SL x k, n, ( )
xn k−

Γ n 1+( )⋅

Γ n k− 1+( )
:=

µ 3:=

B1

cos µ 0.00
π

2
⋅+





cos µ 0.25
π

2
⋅+





cos µ 0.50
π

2
⋅+





cos µ 0.75
π

2
⋅+





cos µ 1.00
π

2
⋅+





cos µ 1.25
π

2
⋅+







































:=

1 2 3 4 5
2−

1.5−

1−

0.5−

0

0.989−
cos x( )

_cos x( )

3

x

13 14 15 16 17
2−

1.5−

1−

0.5−

0

0.759−cos x( )

_cos x( )

15

x

A1

1

µ
0.25−

Γ 1( )⋅

Γ 1 0.25−( )

µ
0.5−

Γ 1( )⋅

Γ 1 0.5−( )

µ
0.75−

Γ 1( )⋅

Γ 1 0.75−( )

µ
k_1−

Γ 1( )⋅

Γ 1 k_1−( )

µ
1.25−

Γ 1( )⋅

Γ 1 1.25−( )

µ

µ
1 0.25−

Γ 2 0.25−( )

µ
1 0.5−

Γ 2 0.5−( )

µ
1 0.75−

Γ 2 0.75−( )

µ
1 1−

Γ 2 1−( )

µ
1 1.25−

Γ 2 1.25−( )

µ
2

2 µ
2 0.25−

⋅

Γ 3 0.25−( )

2 µ
2 0.5−

⋅

Γ 3 0.5−( )

2 µ
2 0.75−

⋅

Γ 3 0.75−( )

2 µ
2 1−

⋅

Γ 3 1−( )

2 µ
2 1.25−

⋅

Γ 3 1.25−( )

µ
3

6 µ
3 0.25−

⋅

Γ 4 0.25−( )

6 µ
3 0.5−

⋅

Γ 4 0.5−( )

6 µ
3 0.75−

⋅

Γ 4 0.75−( )

6 µ
3 1−

⋅

Γ 4 1−( )

6 µ
3 1.25−

⋅

Γ 4 1.25−( )

µ
4

24 µ
4 0.25−

⋅

Γ 5 0.25−( )

24 µ
4 0.5−

⋅

Γ 5 0.5−( )

24 µ
4 0.75−

⋅

Γ 5 0.75−( )

24 µ
4 1−

⋅

Γ 5 1−( )

24 µ
4 1.25−

⋅

Γ 5 1.25−( )

µ
5

120 µ
5 0.25−

⋅

Γ 6 0.25−( )

120 µ
5 0.5−

⋅

Γ 6 0.5−( )

120 µ
5 0.75−

⋅

Γ 6 0.75−( )

120 µ
5 1−

⋅

Γ 6 1−( )

120 µ
5 1.25−

⋅

Γ 6 1.25−( )



































:=

a A1 1− B1⋅:= _cos x( ) a0 a1 x⋅+ a2 x2
⋅+ a3 x3

⋅+ a4 x4
⋅+ a5 x5

⋅+:=

_cos 15( ) 7.596879− 10 1−
×=

cos 15( ) 7.596879− 10 1−
×=

Figure A.1: Decomposition of the function cos (x) into a series _cos(x) in the vicinity of two different points μ =3
and μ = 15

The system consists of the polynomial cos (x) and its six fractional derivatives ki, with a maximum multiplicity 
of 1.25. The order of the derivatives of k changes after 0.25.
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Application B

Differential integral functions of SL().
The text of the VBasic program for calculating the differentialfunctions of SL() is given below.

The text of the program in VBasic for calculating the differential functions of SL ().

Option Explicit

Dim n, k As Double
Dim in_n, in_k As Double
Dim Message1, Title1, Default, MyValue
Dim Message2, Title2
Dim MathcadObj
Dim MCWSheet

Private Sub Form_Load ()
Form1.Enabled = True
Form1.Cls
Form1.Visible = False
Form1.Appearance = 0
Form1.WindowState = 2
Call nk
End Sub

Private Sub nk ()
Message1 = "Enter the degree <n> for the power function y = x^n"
Title1= "Default n =2"
Default= "2"
MyValue = InputBox (Message1, Title1, Default)
n = CDbl (MyValue)
'---------------------------------------------------
Message2 = ""Enter K. If K < 0, then it is an integral of multiplicity K, and if K > 0, then it is a derivative of order K"
k = InputBox (Message2, Title1, Default)
Call Gam
End Sub

Private Sub Gam()
'Setting a custom function
Set MathcadObj = OLE1.object
Set MCWSheet = MathcadObj.Worksheet
in_n = n
in_k = k
Call MathcadObj.setcomplex("in_n", n, 0)
Call MathcadObj.setcomplex("in_k", k, 0)
'Recalculating results in MathCad and getting a custom SLFunctions function
Call MathcadObj.Recalculate
'End of the program
Dim Msg, Style, Title, Response
Msg = "Continue? Yes"
Style = vbYesNo + vbCritical + vbDefaultButton2
Title = "The program has finished working. Viewing the result"
Response = MsgBox (Msg, Style, Title)
If Response = 6 Then Form1.Enabled = False
Set MathcadObj = Nothing
Set MCWSheet = Nothing
End
End Sub
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Below, as an example, is a table (Table 1) with the results of calculating the differential functions on VBasic, 
where n is the exponent of the power function, and k is the parameter of the differential function. For k < 0 it is a 
fractional integral, k = 0 is the parent function, and for k > 0 it is a fractional derivative. 

Table B.1: Values of functions x0,123, x2, x12,3 and sin(x) 

  n k Figure 

(0,123) <-1,93> 
Fractionalintegral 1.1 

 

SLFunction n=0,123 
k=-1,93.pdf

 

0,123 -1,93 

 

0,123 <0> 
Maternalfunction No. 

1 
 

SLFunction n=0,123 
k=0.pdf

 

0,123 0 
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(0,123)<0,37> 
Fractionalderivative 

1.1 

SLFunction n=1,234 
k=0,37.pdf

 

0,123 0,37 

 

2<-2> 
The two-foldintegral 

2.1 

 

2 -2 
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2 <-1,64> 
Fractionalintegral 2.2 

SLFunction n=2 
k=-1,64.pdf

 

2 -1,64 

 

2 <-1> 
Singleintegral 2.3 

 

2 -1 
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2 <0> 
Maternal 

functionNo.2 
 

 

2 0 

 

2 <1> 
The firstderivative 

2.1 

SLFunction n=2 
k=1.pdf

 

2 1 
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2 <1,75> 
Fractionalderivative 

2.2 
 

SLFunction n=2 
k=1,75.pdf

 

2 1,75 

 

2 <2> 
The 

secondderivative 2.3 
 

SLFunction n=2 
k=2.pdf

 

2 2 
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(12,34)<-0,45> 
Fractionalintegral 3.1 

 

SL Fun 12,34 
-0,45.xmcd

 

12,34 -0,45 

 

12,34<0> 
Maternal 

functionNo.3 
 

SL Fun 12,34 0.xmcd

 

12,34 0 
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(12,34)<1,75> 
Fractionalderivative 

3.1 
 

SL Fun 12,34 
1,75.xmcd

 

12,34 1,75 

 

sin(x)<-1,64> 
Fractionalintegral 4.1 

 

sin x -1,64.pdf

 

 -1,64 
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sin(x) <0> 
Maternal 

function No.4 
 

sin x 0.pdf

 

 0 

 

sin(x) <1,75> 
Fractionalderivative 

4.1 
 

sin x 1,75.pdf

 

 1,75 
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