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Application of Differentialintegral Functions

Alexey S. Dorokhov %, Solomashkin Alexey Alekseevich °, Vyacheslav A. Denisov *
& Kataev Yuri Vladimirovich ©

Summary- The article is devoted to the development and implementation of new mathematical functions, differentialintegral
functions that provide differentiation and integration operations not only according to existing algorithms described in textbooks
on higher mathematics, but also by substituting a certain parameter k into formulas developed in advance, forming the necessary
derivatives and integrals from these formulas.

The Purpose of the Research: The expansion of the concept of number, in particular, in classical mechanics, physics, optics and
other sciences, including biological and economic, which makes it possible to expand some understanding of the essence of
space, time and their derivatives.

Materials and Methods: The idea of fractional space, time and its application is given. The usual elementary functions and the
Laplace transform were chosen as the object of research. New functions, differentialintegral functions, have been developed for
them. A graphical representation of these functions is given, based on the example of the calculation of the sine wave. Examples
of calculating these functions for elementary functions are given. Of particular interest is the differentialintegral function, in which
the parameter k is a complex number s, s = a + i - b, although in general, the parameter k can be any function of a real or
complex argument, as well as the differentialintegral function itself.

Research Resulfs: As a result of the research, it is shown how the Laplace transform and Borel's theorem are used to calculate
differentialintegral functions. It is shown how to use these functions to carry out differentiation and integration. It is presented how
fractional derivatives and fractional integrals should be obtained. Dependencies for their calculation are obtained. Examples of
their application for such functions as cos(x), exp(x) and loudness curves in music, Fletcher-Manson or Robinson-Dadson curves
are shown.

Conclusions: Studies show the possibility of a wide application of differentialintegration functions in modern scientific research.
These functions can be used both in office and in specialized programs where calculations of fractional derivatives and fractional
integrals are needed.

Keywords: differentialintegral functions, derivative, fractional derivative, integral, fractional integral.
[. INTRODUCTION

n modern sciences, such as mathematics, physics, astronomy, economics and other sciences, there is little use

of differential functions in calculations, because with the help of fractional derivatives and integrals, very few

physical, natural, social and other processes are described that use not only the first and second derivatives,
single and double integrals, but fractional derivatives and fractional integrals. So in classical mechanics, the first
derivative is used as velocity, the second as acceleration, and the third as a jerk. A one-time integral is used to
calculate the area under the curve, the mass of an inhomogeneous body, a two-time integral is used to calculate the
volume of a cylindrical beam, a three-time integral is used to calculate the volume of the body.

They can be found in the equations of mathematical physics, where, in particular, generalized functions and
convolutional operations on them are used, and in spectral analysis, and in operational calculus based on integral
Fourier and Laplace transformations, and in many other methods where differentiation and integration of functions
are used.

The basis of all these concepts is the derivative and integral’. Two mathematical operations that are
"opposite" to each other, like addition and subtraction, multiplication and division. Two "reciprocal" functions like
sin(x) and arcsin(x), x* and v/x, € and In(x). Two mathematical operations that logically complement each other, the
derivative of the integral does not change the integrable function, as does the integral of the derivative, leaves it
unchanged.

Let us recall the symbols on graphs and in computer programs. Like any mathematical operation, they have
their symbols (designations) on a piece of paper, like ordinary symbols on a computer screen. So, differentiation is
denoted as y’ or d/dx, and integration is [ y(x)dx. In this case, a one — time integral is denoted as [ y(x)dx , and a
two - time integral is [f y(x)z(t)dxdt. With the derivative, the situation is more complicated, it has two designations:
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" And also, definitions of derivatives/integrals based on such concepts as the Riemann-Liouville, Grunwald-Letnikov and Weyl differentialintegrals.
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y' and d/dx. Figure 1 shows (as one of the options) the currently existing designations of differentials and integrals,
widely used in the literature.
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Figure 1: Notation of integrals and derivatives

As can be seen from Figure 1, all the variety of these notations has one property common to all: they try to
reflect in various ways, either with the help of numbers or graphically, the order of derivatives or the multiplicity of the

integral.

In order to unify the record of derivatives and integrals, consider them relative to a certain numerical axis "K"
(Figure 2), where the value of the parameter k corresponds to the multiplicity of the integral or the order of the
derivative. So, in this scenario of notation, k = -7 corresponds to the designation of a single integral [ y(x)dx from
the 2nd line and the designation of the same integral 7 ,*y from the 3rd row, and for k = 7- we have the designation
of the first derivative y' from the 1st row and the designation of the same first derivative d /dx from the 2nd row.

The third line contains the notation of differentials and integrals based on convolutional operations of
generalized functions: y* = f , *y, where k >0, a value unequal to an integer is called a fractional derivative of order
k. An expression of the form: y,, = f, * y is called a primitive of order k, i.e. an integral of multiplicity k [1].

© 2023 Global Journals



<135> A

ys=Y

X
y P =x33

y< 046> =  6ox 2%
y<O> — X2

yP = 2x

y<1,35> - 2,22X0,65
X y<2> -

X

Figure 2: Notation of derivatives and integrals for a parabolay(x) = x?

At the same time, all derivatives, including fractional ones, having a negative index, are located on the
numerical axis on the right, and all integrals with a positive index - on the contrary, on the left. It was possible to
arrange the designations differently, change the plus to minus, but the essence would not change at the same time.
There are many types of symbols, binding to the numeric axis requires clarification.

To bring these notations in line with the numerical axis 'K", the 4th line contains universal notations for
derivatives of any order and integrals of any multiplicity, using angle brackets.

The angle brackets denote the order of the derivative or the multiplicity of the integral, for example, y=% =
y(x) is the function under study, and y="> =[ y(x)dx is its integral, multiplicity 1. So y=?>= d?/dx? = y" is the second
derivative, and y <%~ is the integral, multiplicity 0,46. For example, a certain derivative of the order of 1,35 is
denoted as y ="*~. In other words, if there is a positive number in the angle brackets, it means it is some kind of
derivative, and if it is negative, it means it is an integral. And it is easy to read, and it is located correctly on the
numeric axis: negative values of the k index are on the left, and positive values are on the right. This form of writing
integrals and derivatives is very convenient, for example, for their designation on graphs or diagrams.

Figure 2 shows an example of the notation of derivatives and integrals for the parabola y(x) = x°.

In addition to notation on graphs, this method can be used for programmers writing programs in various
programming languages, for example,

int main () {
floaty, u, z;
int n3;

z=y (4) <1.5>;
u=n3 <-0,25>;

where y <"~ is the derivative of the function y(4) of order 1,5 and n3 <%~ is the integral of multiplicity 0,25 of the
function n3.
In Figure 2, the integral of multiplicity 0,46 and the derivative of the order of 7,35 are shown for x > 0.

It should be borne in mind that when calculating a derivative of a "high" order, say, 723 orders —y
previously it was necessary to perform 722 differentiation operations beforehand. This is due to the fact that the
definition of the derivative/integral implies an increase in the order of the derivative/integral by only 1. It is impossible,
using the existing definition of the derivative, to immediately calculate a high-order derivative from it. Only with the

<123>
;
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help of sequential multiple calculations can the order of the derivative be increased to the desired value. The same
applies to integration.

II. MATERIALS AND METHODS

This method of calculating derivatives reduces the efficiency of using the differentiation operation, for
example, in series expansions, because it requires calculating derivatives of a "high" order, and this is time-
consuming and involves calculation errors. Therefore, in such calculations, only the first few terms of the
decomposition are taken, and the rest are discarded, which increases the calculation error.

As for calculating integrals, especially multiplicities greater than 2, this is an even more difficult task. Thus,
the lack of a simple, reliable and accurate method of differentiation and/or integration significantly hinders
computational progress in mathematics.

The same problem is observed in physics. Many laws of mathematical physics, most often appearing in
simple, accessible calculations, are based on the use, mainly, of the 1st, maximum 2nd derivative (for example,
current/ = dqg / dt, force F = m - &/ dt?) and a single integral, for example, voltage across the capacitor u(t) = 1/C
Ji(t)de.

It is very rare in everyday physics or mathematics to find a 3rd derivative or a 3-fold integral. This does not
happen often. One of the ways to use a 3-fold integral is the Ostrogradsky-Gauss integral to calculate the volume of
a body if the surface bounding this body is known.

And if you look more broadly, then neither in physics nor in mathematics have the everyday laws of the
universe using fractional derivatives and integrals been discovered so far, because their calculation is fraught with
great difficulties [1]. At the same time, it is possible that all the diversity of the world exists exactly there, in a
fractional dimension, which can be described and studied, precisely with the help of fractional (analog), and not
integer (discrete) integrals and differentials.

Take, for example, the mechanism of describing multidimensional structures, for example, multidimensional
space. Our 3-dimensional space and one-dimensional time are described by discrete (integer) coordinate values, in
this case one and three. At the same time, the question of the existence of a space having, not 3, but, say, 2,345
coordinates is of great scientific and practical interest. In other words, the structure of a special "fractional" space, no
longer two-dimensional, is a plane (because to describe the plane, you need 2 coordinates, and we have more —
2,345), but also not a three-dimensional volume (where 3 coordinates are needed), i.e. something average between
the plane and the volume. It is very difficult to imagine such a structure. In nature, such a space does not seem to
exist.

It is even more difficult to determine the velocity or acceleration in such a space, i.e. to describe the
kinematics of the motion of bodies. If it is possible to define the force in such a space (or to use the already existing
classical method of specifying forces), then we can count on success in creating the dynamics of such structures,
i.e., in other words, to create the mechanics of multidimensional space. At the same time, our classical 3-
dimensional mechanics will turn out to be a special case of a more general mechanics — the mechanics of
multidimensional spaces. This can be said about other physical laws of the universe.

And whether our idea of the world will change with the emergence of a new, more general, idea of space.
So far we don't know much about this, because our concepts are tied to a three-dimensional dimensional space,
and all the diversity of the world "lies" in a multidimensional "fractional" world that has not been studied at all.

A number of legitimate questions arise:

- What kind of space is "located", say, between a plane (2-dimensional space) and a volume (3-dimensional), i.e.
a substance with the dimension of space R, where 2<R <37

- What kind of physical quantity, which is between speed and acceleration between y <'> and y %> from the
move, i.e. a physical quantity, defined, for example, the fractional derivative of y <"***, the order of 7,23 (not 1 or
2)?

- Whether Newton's laws are applicable to the so-called fractional space?

- How will the definition of force in fractional space change (if it changes)?

- Will'it be possible to apply the classical laws of mechanics to fractional space, or will it be necessary to create a
new, more general, mechanics of the macro and microcosm?

- Will the interaction between space and time change if we "replace" the classical concept of space with a
fractional one?

- Will there be changes in Einstein's theory of relativity and will the concepts of "gravitational, electromagnetic and
other interactions" and much, much more remain the same?

Answers to these and other questions can be obtained if you have a convenient apparatus for calculating
derivatives/integrals of any order/multiplicity, including fractional ones. In other words, it is necessary to create such
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a calculation algorithm, simple and convenient, especially for novice researchers, where instead of calculating
integrals/differentials, it would be possible to use the usual substitution of numbers, in which the desired order or
multiplicity could be set without performing calculations, but simply substitute the desired parameter into the desired
formula and get a ready derivative/integral without their calculations, i.e. immediately. Such a tool, which could be
called, for example, functions - SL(x, k), would greatly simplify the process of calculating derivatives and integrals
and significantly expand the boundaries of our knowledge.

First, we introduce the concepts of a differential integral function based on the definition of a differential
integral. The differential integral function SL (x, k) is an ordinary function of several arguments, where, separated by
commas, its arguments (in this case one — x) and the parameter k, the order of future derivatives and/or the
multiplicity of integrals are indicated?.

For example, for a parabola y(x) = x?, such a differentialintegral function SL(x, k) will have the form?.

x2—k

SL(x, k) = 2"

r3—k) (1)

where, x is the argument of the function,
k is a parameter that specifies the order of the derivative or the multiplicity of the integral.

This is the differential integral function of a parabola, the usual function of 2 arguments, argument x and
parameter k. It represents a whole set of integrals and derivatives of any order and multiplicity* (the main, mother
function). How to use it? You need to set the parameter k and get the desired derivative or integral.

For example, for a parabola, we substitute k = 0 into it. Then, for k = Oy (x, k) = X2 (I (3 - k) = 2)°the
function (parabola) does not change. When k = 1y (x, k) = 2x and the parabola is transformed into its 1st derivative -
y ="". When k = -1y (x, k) = x*/3 and the function becomes its one-time integral -y =7’~, and for k = -2y (x, k) =
x*/12 - double -y =2~. No calculations, just substitution.

Fractional derivatives and integrals are of particular interest, because there is no simple and reliable way to
calculate them, except for the method indicated above [2]. In this case, the method of obtaining is the same. To
calculate them, it is enough to substitute the necessary value of the derivative instead of the parameter k, for
example, k = 0.123 and the parabola becomes its derivative of the order 0.123 -y <0.123>:
x2-0123

SLOx k) =2t s

float,3 - 1,12 2
If it is necessary to obtain an integral of multiplicity 3,45 - y <%~ it is enough to substitute k = -3,45 into the
differential function (1) and the parabola becomes its integral of multiplicity 3,45 - y <%%~:

x 21345

r'(3+3,45)

SL(x, k) := 2 float,3 — 7,606073x5* )
This method of calculating fractional derivatives is no different from the method of obtaining integer
(discrete) derivatives — the same substitution. There is no difference between an integer or fractional
derivative/integral. Simple substitution to get a given resullt.
Consider another example: y(x)=sin(x). For a sine wave, the differentialintegral function SL(x,k) will have the
following form:

SL(x,k) :=sin (x + k -g) (4)

This is a sine wave whose phase shift depends on the order of its derivative/multiplicity of its integral. Atk =
0, the sine wave does not change, at k = 7, and becomes cos(x), i.e. its the first derivative is y <'>, and at k = -7 it
becomes -cos(x), i.e. its integral is y =7'>. At -1<k <7, the function occupies an intermediate position between -
cos(x) and cos(x), including sin(x) at k = 0.

The differential integral function for the sine wave (4) is a graphical representation of the differential integral
function, namely, the parameter k represents a part of the right angle for unit orts. At kK = 7, the function SL(x,7)
becomes the 1st derivative, such a unit ort is perpendicular to the abscissa axis, and at k = var it is a fractional
derivative of k order and the angle k (in values from 0 to 1 or in % of 90 degrees) it is only a part of the right angle.

For the exponent y(x) = €%, the differential integral function SL(x, k) does not depend on k and all its
derivatives and integrals are equal to each other and equal to the exponent itself.

2 Here SL(x, k) is another form of writing a power differential function, different from writing the formy <.

3 Here and further calculations are performed in the MathCad program, so it uses a dot in its formulas instead of a comma.

* As the latter, there may be the differentialintegral functions themselves. In this case, the parameter k can also be a complex value.
® G(x) - gamma function.
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These examples can be summarized in Table 1, where its derivatives and integrals are given for some
elementary functions.
Table 1: Examples of calculation of derivatives and integrals

y<—1> y<'0.5> y<O> y<0.5> y<1.5> SL (X, k)
[N+ X" | [(n+1)x"70° . [ (n+1) x™08 [(n+1)x+1e [ (n+1) x™
r(n+2) r(n+1,5) r (n+0,5) r (n-0,5) r(n+1-k)

3 25 2 15 05 2 X
x/3 0,601x X 1,504x 2,256X r (3k)

e e e e e e
sin(x-1/2) sin(x-0,51/2) sin(x) sin(x+0,51/2) sinx+1,5m/2) | sin (x+k1/2)

Differential functions can be a function of 2 or more arguments, for example, SL (x, y, k), where (x) and (y)
are two arguments of the same function: SL (x, y, k,, k) = 2 - k, + (x —y) - k, and k, and k- are still a parameter. In
addition, any continuous elementary function can be used as a parameter, including the same differential integral
function, for example:

Gy, k1, k2) = " (yk1+Z2k2) 5)

Of particular interest is the differential integral function, in which the parameter k is a complex number s, s =
a + i - b, although in general, the parameter k can be any function of a real or complex argument.

[11. RESEARCH RESULTS
To obtain the differential integral function, we recall the Laplace integral transformation and Borel's theorem.
The integral Laplace transform has the form
LIf(O] = F(s) = [} f®e™tdt = [f(t) - e de]< o< (6)

where s = a + i * b is a complex quantity. Here f (f) is the original function, and F(s) is its Laplace image. This is a
direct conversion of the original into an image. The inverse Laplace transform

g+ir©

f@) = % eStF(s)ds = [eSt - F(s)-ds]< 1Po-in<oti= (7)

it is necessary to find the original of the function by its image.
Let's consider one of the main properties of this transformation — the differentiation of the original function.
Let L[f(t)] = F (s). Let's find L[f(=""], where f(t)~""- is the 1st derivative, and L[f (t)~""]- is its image.
L[f(t)<1>] - [f(t)<1> ,e—stdt.]<—1>0<t<90 — e—st 'f(t)o ct<w + s- [f(t) . estdt]<—1>0 <t< o (8)

If for t-> o0 the function f (t) increases no faster than M * e*, then
e *f () >0 for t> and is equal to f (0), and

Lif@®) "] =s*F(s)-1(0) ©)
Forf(0) =0
Lif@®) "] =s*F(s) (10)

and the differentiation of the original function corresponds to the multiplication of the image of the function by s. Let's
consider another important property — the integration of the original.

If g(t) = [f(t)dt]~"",-..,then under zero initial conditions g (t) "> = f (t) and
Lg()=""] = L[f®)] = s *L[g()] = s * L[[f(x) dg ~""p ey (11
Since L[f(t)] = F (s), then
L[[f(@*dd] " oceee =F(S)ls (12)

that is, the integration of the function corresponds to the division of the image F (s) by s.

© 2023 Global Journals



Taking into account expressions (14) and (16), we can conclude that the operations of
differentiation/integration of the original can be replaced by algebraic actions (multiplication/division by s) on their
images [3]. Thanks to this replacement, this method has found the widest application in integral and differential
calculus [4].

However, the case is of particular interest when the function is represented as

LT ®] = F(s)/(s") (13)

that is, the image is divided by (s-k). In this case, depending on k, we get fractional derivatives/integrals. For k> 0,
fractional derivatives of the order k are formed, and for k <0, fractional integrals of the same multiplicity are formed.

LIF@®)] =25 = 1/(T(=k)) (14)
SL (x, k) = L[f@1)] (19)

These expressions (18) and (19) define fractional derivatives/integrals of order k, and are the differential
functions of the desired function f(t). Examples of these functions are shown in Table 1.

Let's consider some examples of the use of differential integral functions in solving approximation problems.
Suppose must be approximated by a power series pad_cos(x) in a neighborhood of the point x0, the function cos(x),
and choose the polynomial coefficients a,...a; soO as to minimize the mean square error of approximation of this
polynomial are:

_COS(X) =@y + a;X + ayX°+ a;x® + a;x* + a;x° (16)
and at the selected point is known for its derivatives and differentials, as an integer and the fraction.

To do this, we fulfill the approximation conditions according to which the value of the polynomial _cos(x) and
its fractional derivatives (for simplicity of calculation, only six (5) derivatives are used®. To increase the accuracy, you
can use more, for example, several dozen derivatives, the computer allows it. Instead of derivatives, its integrals can
also be used in the same way) in the vicinity of a given point x0, from the domain of the polynomial definition, should
equal the corresponding values of the desired function cos(x) and its fractional derivatives (and integrals). 2 points
are selected as points —x = 3and x = 75.

The fractional derivatives/integrals for the elements of the polynomial are defined as

I(n+1)x"k

SL(x,n k) = r(n+1-k)

where x -is the matrix of diagnostic information;
n - is the exponent of the polynomial;
k- is a parameter that sets the multiplicity of the integral or the order of derivatives.

Further, solving a linear algebraic equation of the form:
a =A1"B1 (18)
we obtain the solution of this equation in the form of the desired coefficients a,...a5 (Application A Figure A.1).

The solution was made in the MathCad program, the calculation listing is given for the point x = 3 and
additionally for x = 15.

Another example. In addition to the approximation at a point, using the differential integral functions, it is
possible to approximate on a given segment. Examples of this approximation are given below.

Let it be necessary to approximate, for simplicity, the known functions cos (x) and the exponent exp(x), as
well as cos(x) on the plot 4 <x <6, as well as volume curves, according to the type of Fleicher-Manson or Robinson-
Dadson curves. For ease of calculation, we approximate 6 points for 2 cos (x) functions, 4 (four) points for the
exponent exp(x) and 23 for volume curves.

For a sine wave, the desired points will be of two types. In the first case, these are the points -5, -4, -2, 1, 3,
5. In the second case, thisis -5, -3,-1,1, 3, 5.

We will approximate the sinusoid with a polynomial (17).
Exponent — exponent.

®To approximate in this case, it is to decompose into a power series using differential integral functions in the vicinity of the point x,, bearing in
mind that these points are the values of the function f (x) = cos (x).
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For the first case, for points -5, -4, -2, 1, 3, 5 the initial data obtained by formula (17) will have the following form.

0.615
1 -5 25 -125 625 3125 cos(-5) 0207
1 -4 16 -64 256 —1024 cos(—4) o5
1-24 -8 16 -3 cos(—2 _ _
A2 = B2 = 2 b2 .= A2 1Bz P2=| -003%
111 1 1 1 cos(1) 3
13 9 27 8 243 cos(3) 9.731x 10
15 25 125 625 3125 cos(5) 1117x 16 °
As aresult of calculating the series rjad_cos (x), we get the values of cos (x).
rjad_1_cos (x) := b2y + b2y + b2, - x? + b2; - x3 + b2, - x* + b2 - x° (19)

The graphs of these two functions cos (x) and rjad 1 _cos(x) and some values of these graphs are shown in Figure 3.

fad_1_c0s(x) \\ /——\ /
os(¥ \/ 0 \ /s

X

Figure 3: Values of the functions-rjad 7 cos (x) and cos (x)

rjad_1_cos (—5) = 0.284 rjad_1_cos (—4) = —0.654
cos(—5) = 0.284 cos(—4) = —0.284
rjad_1_cos (—2) = —0.416 rjad_1_cos (—1) = 0.54
cos(—2) = —0.416 cos(—1) = 0.54
rjad_1_cos (3) = —0.99 rjad_1_cos (5) = 0.284
cos(3) = —-0.99 cos(5) = 0.284
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For another cosine, for the values -5, -3, -1, 1, 3, 5 the initial data obtained by the formula (17) will have the
following form:

SL(_XO,_nO,O) SL(—XO’—nl’O) Sl_(_xo,_nz,o) SL(_xO,_nS,O) SL(_XO,_n 4,0) SL(_XO,_nS,O)
SL(_xl,_nO,O) SL(_xl,_nl,O) SL(_xl,_nz,O) SL(_xl,_nS,O) SL(_xl,_n 4,0) SL(_xl,_nS,O)
SL(_xz,_nO,O) SL(—XZ’—nl’O) SL(—XZ’—nZ’O) SL(_XZ,_n3,O) S|_(_x2,_n 4,0) SL(—XZ’—nS’O)
A3 SL(_xs,_nO,O) SL(—XS’—nl’O) SL(_xs,_nZ,O) SL(_xs,_ng,O) SL(_x3,_n 4,0) SL(_xg,_nS,O)
SL(_x4,_n0,o) SL(_X4,_n1,O) SL(_x4,_n2,o) SL(_x4,_n3,O) SL(_x4,_n 4,0) SL(_x4,_n5,o)
SL(_XS,_nO,O) SL(—XS’—nl’O) Sl_(_xs,_nz,o) SL(_x5,_n3,O) SL(_XS,_n 4,0) SL(_X5,_n5,O)
cos(-5) -5
cos(-3) -3 !
cos(-1) -1 d= A3 - B3
B3 = X=
cos(1)
cos(3)
cos(5)
rjad_2_cos(x) = dy + dyx + dyx? + d3x3 + dyx* + dsx® (20)

The graphs of these two functions cos (x) and rjad_2 cos(x) and some values of these graphs are shown in Figure 4.

T o
cos(X)
rjad_2_cos(X)
X
Figure 4: Values of the functions - jad 2 _cos (x) and cos (x)
rjad_2_cos (—5) = 0.284 rjad_2_cos (1) = 0.54
cos(—5) = 0.284 cos(1) = 0.54
rjad_2_cos (—3) = —0.99 rjad_2_cos (—3) = —0.99
cos(—3) = —0.99 cos(3) = —0.99
rjad_2_cos (—1) = 0.54 rjad_2_cos (5) = 0.284
cos(—1) = 0.54 cos(5) = 0.284

If we look at the same graphs in other coordinates, we can say that at these points the graphs coincide with
their values, and at other points they do not, and they differ significantly.

© 2023 Global Journals

Global Journal of Researches in Engineering (1) Volume XXIII Issue I Version I E Year 2023



(1) Volume XXIII Issue I Version I E Year 2023

gimneerin g

S

Global Journal of Researches in En

e
daiesy NG L
oos() '. ;fd- T T
[ 4

Figure 5: Values of the functions-rjad_1_cos (x) and cos (x)

The values of these two functions-rjad 7_cos(x) and cos (x) in other coordinate systems coincide only in this
section in = 2mt, and for other values of the argument they differ greatly.

Figure 6 shows the values of these two functions rjad 2 cos(x) and cos (x).
In the given figure shows that the values of these two functions rjad 2 cos(x) and cos (x) in different
coordinate systems coincide only in this region of = 6, and for other values of the argument vary greatly.

This suggests that approximation by differential integral functions is possible both at a point and at a certain
area. The approximation error is minimal and can be reduced by increasing the number of terms of the polynomial.

cos(X)

rjad_2_cos(X)

Figure 6: Values of the functions-rjad 2 cos (x) and cos (x)
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The exponent can be approximated by the exponent itself. An example is shown below in Figure 7.

n c 1 =2 K
0 1 2 3 1
il € 119x 10°
0 1 2 3 2
27 2 2 2 e _ 3
Al = Bl = a=A1 l.B]_ a=| 196x 10
e ol & e’ 86371
100 101 102 103 elO 89.924
k=(127 10
2.718
7.389
" | 2007 x 10°
2203 10°
rjad_exp(x) :=ay + a; x + a,x* + azx3 (1)
rjad_exp (1) = 2.718 el =2.718
rjad_exp (2) = 7.389 e? =7.389
rjad_exp (7) = 1.097 x 103 e’ =1.097 x 103
rjad_exp (10) = 2.203 x 10* el® =2.203 x 10*
Figure 7 shows the values of these two functions - jad_exp(x) and exp ().
4x10% " /
rjad_exp(X)
& 210"
| 5 10 15

X

Figure 7: Values of the functions - jad_exp (x) and exp (x)
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The graph of the cos(x) function on the section from x = 4 to x = 6 and the initial data are shown below in Figure 8.

_ -k The set point -
k1=1+110 ¢ XX rm+ 1) point -
SL(xk,n) = ————= .
r(n-k+1) po=E
2 3 4 5
1 u u u H u
W 0.25 . 1 1-0.25 2_Mz—o.zs 6-;,13_0'25 2 4.H4—0.25 120-|u5_0'25
r(1-025 T1(2-025 TI(3-025) I'(4-025) TI(5-025 TI(6-0.25)
-05 1-05 2-05 3-05 4-05 5-0.5
po (@ 2p 6p 24 120
(1-05 TI(2-05 TI(3-05 TI(4-05 TI(5-05 TI(6-05
Al = - - — _ _ _
" 0.75 . 1) lLl1 0.75 2-u2 0.75 6-|u3 075, 4-u4 0.75 120.Ms 0.75
r(1-07) TI(2-075 I(3-075 I(4-075 TI(5-075 TI(6-0.75)
- k—1~r(1) lLL1—1 2'H2—1 6~u3_1 24'u4_1 120u5_1
ri-k1 r@-17 T1B-1) TI@Al-1) T16-1) (6 -1)
W 125 (1) u1—1.25 2'M2—1.25 6_uafl.zs 5 4'M471.25 120'M571.25
r(1-125 Tr1(2-125 I(3-125) I(4-125 TI(5-125) TI(6-12)
T _
cos| u + O.OO-E) a= Al 1B1
cos| u + 0.25'1
2
cos| u + 0.50-%)
Bl =
T
cos| u + 0.75—
2
cos| u + 100>
2
cos| u + 1.25-12)

2 3 4 5
_cos(X) = 8yt X+ Ay X+ ayX +ayX +agX

_cos (5) = 2,836622-10"
cos (5) = 2,836622:10"
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I-
0.5
cos(x)
cos(x) K 44 5 55 6
_o.
X

Figure 8: Values of the functions — cos(x) and _cos (x)

Additionally, the application of differential integration functions in music, curves of equal loudness, for
example, Fletcher-Manson curves or Robinson-Dudson curves, Figure 9, is presented.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23
KRG= 0 20 40 63 100 160 200 250 315 400 500 630 800 1-103(1.25-103| 1.6:103| 2-103| 2.5-1033.15-103| 4.103| 5-103| 6.3-103| 8.103| 1-104{1.25-10
1| 2996 3.689| 4.143| 4.605| 5.075| 5298| 5521| 5753 5.991| 6.215| 6.446| 6.685| 6.908| 7.131| 7.378| 7.601| 7.824| 8.055| 8.294| 8517| 8.748| 8.987 921 943
2 119 1053 98.4 925 87.8 85.9 84.3 82.9 817 80.9 80.2 .7 80 825 83.7 80.6 7.9 7.1 783 81.6 86.8 914 91.7 85.
n—k i=0.28
X [I'(n+1
SL(x,n,K) = x Th+1 . ; 0,2,7,11,12,14,16,17,19,21, 22, 2¢
I'(n -k +1) j =0.2¢
k:=C
0 2.9% 119
1 4143 984 _A=for je0.11
2 5.753 829 for ie0.11
3 6.685 79.7 _SL(i,j) « SL(xl,nJ. ,o)
4 6.908 80
= A lB
5 7.378 837 a=
n:= X:= y =
6 7.824 77.9
7 8.055 771
8 8517 816
9 8.987 914
10 921 917
11 9.433 85.4
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Figure 9: Curves of equal loudness _y, dB and a curve approximating them rjad( x), Hertz

From the materials presented in the figures, it can be seen that for a given number of points, the
approximation is satisfactory.

IV. CONCLUSIONS

Differential integral functions, this is the Riemann-Liouville differential integral, written in a convenient form,
as a function of two variables’: the usual argument x and the parameter k, which sets the multiplicity of the integral
or the order of the derivative. These functions allow you to calculate the desired integral or derivative by substituting
the parameter k into the established formula. The formula does not change, only one parameter changes. Classical
tables of integrals and differentials are not required. Only tables of pre-prepared formulas of differential functions are
used, which can be represented in simple calculations in the form of icons, and in the form of SL (x, k) functions in
computer programs written in programming languages such as VBasic, C++, Excel, MathCad, Python, etc.

These differential integral functions are of great practical importance, for example, they allow us to
approximate a certain given function in the vicinity of the desired point (by the type of decomposition into a Taylor,
Maclaurin, Fourier series or Z transformation) or on a segment. At the same time, the conditions of equality of not
only the function itself, but also the selected derivatives and differentials, integer and fractional, are observed at the
desired approximation points themselves.

Examples of approximation of some elementary functions are shown, for example, using a standard
polynomial. It is also possible to approximate trigonometric, power functions and their combinations.

To simplify working with differential integral functions, they can be represented in two forms: for a graphic
image-as a function with angle brackets, and for writing in the program text-as a function SL (x, k) of two or more
arguments (Application B).

" There may be other parameters, for example, integration limits, constants, etc.
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APPLICATION A
n-k

T(n+1 The set point -
6 SL(xk.n) = X T+ point-
k1:=1+110 I(n-k+1) W= 3
2 3 4 5
k=0 -> 1 1 1 T H i
o 9% 1 H1—0.25 2,270 g 3025, 4-025 ., 5-025
= ->
’ r(1-025 TI(2-025) I'(3-025 T(4-025 TI(5-025 TI(6-0.25)
- . W05y, L08 2,205 53705, 4705, 505
o r(1-05 TI(2-05 T(3-05 TI(4-05 T(5-05 TI(6-05)
Al = -0. -0. -0. -0. -0. -0.
ors WOy 105 27075 o 3-075 =075 . 5075
’ [(1-075 TI(2-075 TI(3-075 TI(4-075 I(5-075 T(6—0.75)
- k_1_r(1) W1 2,27t 637" a4 10,57t
k=100  -> rl1-k1) TI@-1) T@B-1) T@A-1) TG-1) r'(6 - 1)
By G118, 27125 o 8125, 40125, 50125
k=125 > [(1-125 TI(2-125 I[(3-125 I(4-125 TI(5-125 [(6-125)
0.00- = -1 2 3 4 5
cos| p + 0. E a=A1 "Bl _cos(X) = 8y + A X+ Ay X+ AyX + 8, X+ apX
cos(p + 0.25-2)
2
cos(u + 0.50-%)
Bl =
cos(u + 0.75~£)
2
Cos(p + 1.00%)
X X
Y
cos(u + 1.25~—j -1
2 __cos (3) =-9,899925 x 1071 _cos(15) = —7.596879 x 10
1

cos (3) = -9,899925 x 10™* cos(15) = —7.596879 x 10

Figure A.1: Decomposition of the function cos (x) into a series _cos(x) in the vicinity of two different points u =3
andu = 15

The system consists of the polynomial cos (x) and its six fractional derivatives ki, with a maximum multiplicity
of 1.25. The order of the derivatives of k changes after 0.25.
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APPLICATION B

Differential integral functions of SL().
The text of the VBasic program for calculating the differentialfunctions of SL() is given below.
The text of the program in VBasic for calculating the differential functions of SL ().

Option Explicit

Dim n, k As Double

Dimin_n, in_k As Double

Dim Message1, Title1, Default, MyValue
Dim Message?2, Title2

Dim MathcadObj

Dim MCWSheet

Private Sub Form_Load ()
Form1.Enabled = True
Form1.Cls

Form1.Visible = False
Form1.Appearance = 0
Form1.WindowState = 2
Call nk

End Sub

Private Sub nk ()

Messagel = "Enter the degree <n> for the power functiony = x~n"
Title1= "Default n =2"

Default= "2"

MyValue = InputBox (Messagel, Title1, Default)

n = CDbl (MyValue)

Message2 = "Enter K. If K < 0, then it is an integral of multiplicity K, and if K > 0, then it is a derivative of order K"
k = InputBox (Message?2, Title1, Default)

Call Gam

End Sub

Private Sub Gam()

'Setting a custom function

Set MathcadObj = OLE1.object

Set MCWSheet = MathcadObj.Worksheet
inn=n

in k=k

Call MathcadObj.setcomplex('in_n", n, Q)

Call MathcadObj.setcomplex('in_k", k, 0)
'Recalculating results in MathCad and getting a custom SLFunctions function
Call MathcadObj.Recalculate

'End of the program

Dim Msg, Style, Title, Response

Msg = "Continue? Yes'

Style = vbYesNo + vbCritical + vbDefaultButton2
Title = "The program has finished working. Viewing the result"
Response = MsgBox (Msg, Style, Title)

If Response = 6 Then Form1.Enabled = False
Set MathcadObj = Nothing

Set MCWSheet = Nothing

End

End Sub
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Below, as an example, is a table (Table 1) with the results of calculating the differential functions on VBasic,
where n is the exponent of the power function, and k is the parameter of the differential function. For k < O it is a

fractional integral, k = 0 is the parent function, and for k > 0 it is a fractional derivative.

Table B.1: Values of functions X%, x% x'3and sin(x)
PDF File n k Figure
n= in_n m= 0123
k:=in_k k=-1.03
kGin, kj = u nkin,k) = n—k
Cim+ 1 — k)
yix,n, k) = kGi{n, k) e e yix,m, k} Aoar, 3 — 0448 e
(01123) <-1,93> s
Fractionalintegral 1.1
| OOF | /
@ 0,123 -1,93
L
SLFunction n=0,123
k=-1,93.pdf yhnssky
10k 5 1 L |-
0= im_n I 1.123
k:=in_k k=10
kliin, k] = M nkin.ki:=n-k
Cinm+ 1 — k)
wix,n, k= kG{n, kb Ak yix,n kp foat, 3 — 1ik- et
0,123 <° .
Maternalfunction No.
1
LECF | 0,123 0
F
SLFunction n=0,123 f
k=0.pdf e
157
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G

(oY 9 23) <0,37>
Fractionalderivative
11

)]

SLFunction n=1,234

= in_m n= 1234

k:=in_k k =137

bt it t 1)

Cin + 1 — k)

kin, k
yix.n, k)= kGin, k) |

ar

nkin.ki:=n-k

dLEnd

yix.n k} Moot 3 — L1K-x

k=0,37.pdf ol
:II :h
K
n s mn ns= :
k:=in_ k k=-2
kGiin k) u nkin, k) :
Iin+ 1-k)
yix.n.k) = kG(n,k)-x Y y(x.0.k) float,3 — 0.0833-x"
2<-2> I-HI"'
The two-foldintegral
2.1 Y .
.E: Il. X047 I‘]'
éé} \
\ [."I'
SLFunction n=2 s001 /
k=-2,pdf "
4047
2o
‘lu ! L iu
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= In_i =2
k:=in_k k =—1.64
PoT g 1 L nkin k= n -k
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yix,n, k} = kGi{n, k) fein, k) yix,m k) Noat, 3 — 0.14] i
RiHT
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| FDF |
-1.64 ik Iu'
SLFunction n=2 f
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G . ] I.'\- iu
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Singleintegral 2.3
| FOF |
4 201
SLFunction n=2
k=-1.pdf
yix.n, kb L +
&) [£] 3 14
mlull) g
aoir-
%

© 2023 Global Journals

Global Journal of Researches in Engineering (1) Volume XXIII Issue I Version I E Year 2023



lobal Journal of Researches in Engineering (1) Volume XXIII Issue I Version I E Year 2023

G

m= in_m n=2

k:=in_k k=1
kGin, k) = u mkin.k)l:=n -k
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