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Abstract- The design of mammalian cell culture processes as 
technological platform for monoclonal antibody (mAb) 
production is a complex task mainly due to partial knowledge 
of culture media composition impact on process outcomes. 
Faced with this problem, the present work aimed to 
characterize the metabolic profile during the early culture at 
lab-scale of a specific cell line transfected to obtain a 
monoclonal antibody (mAb) of therapeutic interest in the 
treatment of cancer, seeking most favorable nutritional 
conditions. The experimental design, based on the use of four 
different media in a two-liter scale culture, provided data on 
the content of 19 metabolites, cell concentration, and mAb 
concentration over the course of batches, where in the first 
case measurements were performed with liquid 
chromatography-mass spectrometry (LC-MS) as an advanced 
laboratory analytical support. The corresponding data-driven 
models, as a result of integrating Principal Component 
Analysis (PCA), Soft Independent Modeling of Class Analogies 
(SIMCA) and Partial Least Square Regression (PLSR) 
methods, revealed the actual difference among media 
regarding cell culture metabolic progression, and allowed to 
estimate cell growth behavior and mAb generation relative to 
biomass metabolites composition. Consequently, such an 
approach facilitated defining the metabolites that benefit the 
aforementioned cell culture process and those with a negative 
effect, as well as the choice of media that ensure the best 
nutritional conditions under technological and economic 
bases, thereby providing the essential elements for further 
media optimization. 
Keywords: mammalian cell culture, metabolic profile, 
data-driven modeling, principal component analysis, soft 
independent modeling of class analogy, partial least 
square regression. 

I. Introduction 

he use of mammalian cells to produce monoclonal 
antibodies (mAbs) has become a widespread 
practice in the biotechnology domain because of 

its ability to largely achieve posttranslational 
modifications  and  protein   folding.  However,  from  an  
 

      
 

 
  

 
  

 
   

engineering point of view, the greatest obstacle in 
designing culture processes including these cells is their 
high complexity, as currently there is partial knowledge 
of laws governing such phenomena. On one hand, it 
shall be taken into consideration the significant amount 
and intricate sequence of biochemical reactions at the 
intra and extracellular level, while on the other hand cell 
environment operational conditions have also their 
impact on culture process performance regarding 
product-required quality [1]. 

A key issue to consider at first is the influence of 
media metabolites content on cellular growth and mAb 
generation along the process. As a sound strategy, 
focusing on culture metabolic profile could start at small 
scale, leaving the inclusion of cell environment 
operational variables for further studies at gradually 
larger scales, where fluctuations of these are better 
detectable and meaningful to establish culture process 
state [2,3]. 

In such research, the design of experimental 
plans combined with the use of multivariate data 
analysis (MVDA) tools has shown its advantages, by 
facilitating the development of data-driven models that 
integrates input and output variables in all its 
interrelation complexity, hence providing comprehensive 
process variability characterization and prediction [4,5]. 

There is a wide range of MVDA applications that 
has been described in the biotechnological domain, for 
instance: cell culture process scales comparability [6,7]; 
determine the relationship between process parameters 
and critical quality attributes [8,9]; feeding strategies for 
metabolic control and improving process robustness 
[10,11], among others. In addition, MVDA is currently 
recognized as a useful mean to analyze genomic and 
proteomic data, as it provides the tools for a significant 
complexity reduction in data processing [12-14]. Yet, 
regarding the implementation of MVDA in metabolic 
studies and media selection, there are still a discrete 
number of published references that manage to analyze 
a significant spectrum of metabolites [15-17]. 

Such praxis is in full correspondence with 
Quality by Design current paradigm as appointed by 
The International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use (ICH) 
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in the Q8, Q9, and Q10 guidelines, where process 
understanding acquires a key role for assuring an 
effective scaling-up exercise toward a successful 
technology transfer [18].

The present work exposes a MVDA approach 
for characterizing metabolic profile during the early lab-
scale culture of a specific CHO-K1 cell line transfected 
for obtaining a mAb under study in a two-liter bioreactor, 
thus determining the most advantageous culture 
nutritional conditions. Results derived from this research 
provide a valuable knowledge that shall contribute to 
subsequent studies as a continuity for achieving culture 
media optimization and further process scale-up.

II. Materials and Methods

a) Cell Culture Experiment
A transfected mammalian cell line CHO-K1 

developed for expressing the mAb of interest was 
cultured in a two-liter volume APPLIKON bioreactor 
equipped with an automatic process control system, 
using four different protein-free and serum-free media 
identified as M1, M2, M3 and M4. Main chemical 
composition of each medium is summarized in Table 1:

Table 1: Composition of culture media in mg per liter

Components Medium M1 Medium M2 Medium M3 Medium M4
Ala 1.052 1.311 0.952 0.895
Arg 1.562 1.356 1.792 1.640
Asn 3.727 1.371 1.512 1.363
Asp 0.028 0.020 0.702 0.687
Gln 4.236 2.507 5.133 3.745
Glu 0.396 0.514 0.548 0.525
Gly 0.261 0.411 0.549 0.605
Ile 0.104 0.054 1.690 1.539

Leu 2.304 1.359 1.836 1.573
Lys 1.806 1.209 1.367 1.172
Met 0.471 0.298 0.439 0.374
Phe 0.775 0.431 0.051 0.044
Pro 1.207 1.210 0.084 0.089
Ser 1.510 1.373 1.449 1.324
Thr 1.184 0.572 0.835 0.713
Val 1.786 0.913 1.278 1.038
Pyr 1.543 1.044 0.973 0.666

Gluc 24.182 10.887 20.138 17.348

The operation of each run was carried out in 
batch mode, starting from an inoculum with a 
concentration greater or equal to 0.4 x 106 cells/ml in the 
medium previously loaded in the bioreactor, and then 
the process was allowed to carry on until viability was 
less than 50%. Cell environment culture conditions were 
set as follows: temperature at 37 ± 1°C, dissolved 
oxygen at 40 ± 10% and pH at 7.2 ± 0.2, as well as an 
agitation impeller tip speed kept at 1 m/s and aeration 
rate between 0.005 – 0.0075 vessel volumes per minute 
(vvm).

b) Analytical Support
Several measurements were obtained off line 

from culture supernatant samples taken over the course 
of each batch:

• The concentration of metabolites was measured 
through a Liquid Chromatography-Mass 
Spectrometry (LC-MS) analytical method. The 
equipment configuration was composed of Heater 
Electro Spray Ionization source, ORBITRAP detector 
(AGILENT, USA) and ZIC-pHILIC column (MERCK 
MILLIPORE, Germany). All standard reagents used 
for quantification of the 19 metabolites involved in 

the process were from SIGMA ALDRICH (MERCK 
MILLIPORE, Germany).

• The mAb concentration (IgG) was determined by an 
own-developed ELISA sandwich method. In 
summary, 96-microwell plates were previously 
coated with human PD-1 and kept overnight at 4°C. 
Next, the samples and the standard were added to 
the plates and incubated at 37°C for one hour. 
Subsequently, an anti-Human IgG antibody 
conjugated with alkaline phosphatase was added to 
the plate and incubated at 37°C for one hour. Then, 
p-Nitrophenyl phosphate substrate was added to 
the plate and after 30 minutes, the plates were read 
by means of a spectrophotometer (JASCO, Japan) 
at 405 nm.

• Concentration of cells (X) was obtained from visual 
counting through optical microscopy, using the 
trypan blue dye exclusion method in a Neubauer 
chamber (MARIENFELD, Germany).

c) Data Preparation
All batch measurements collected over time 

were organized in a single two-way data matrix of 756 
elements in a Variable-Wise Unfolded (VWU) array, 
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where each column is a single variable, and each row 
contains measurements for the variables at a specific 
time point in correspondence to batches [19,20]. 
Notation of scored samples (S) represents first number 
as the specific culture medium in the batch, and second 
number as the time instant (T) of sampling (for example, 
S21 score is the first sample taken at time T1 of batch 
run using M2). The work matrix can be seen here.

d) Data Processing
MVDA was applied with the following sequence [21]:

• Use of descriptive statistic and run chart graphics 
for a preliminary look to the dataset in order to 
identify variable fluctuations, tendencies and 
potential correlations between them.

• Data auto-scaling standardization (ratio of centered 
mean and the standard deviation) in order to avoid 
prevalence of variables due to their magnitude.

• Use of Principal Component Analysis (PCA) for 
dimensionality reduction in a few independent latent 
variables or Principal Components (PC) in order to 
differentiate input variables according to their real 
impact on process variability and probable 
correlation between each other, as well as 
identification of score’s trends.

• Use of Soft Independent Modeling of Class 
Analogies (SIMCA) method [22,23] to confirm 
differences among nutritional media according to 
batches progress.

• Use of Partial Least Square Regression (PLSR) to 
find the potential interrelation between cell and IgG 
concentration as output variables vs. supernatant 
metabolites content as input variables, focusing on 
data from the exponential phase of batch cell 
growth.

It should be noted that given the limitations to 
replicate experiments in this early stage of development, 
an internal full cross validation (leaves out only one 
sample at a time) procedure was applied to appraise 

PLSR model ability of estimation rather than prediction, 
which is admissible for the purposes of the present work 
[21,24].

An available UNSCRAMBLER X version 10.4 
software (CAMO Software AS) was used to run the 
above MVDA methods, which does not mean a 
preference among other applications.

III. Results

A first look at batch culture metabolic dataset by 
applying descriptive statistics and run charts showed 
that all measured metabolites could be relevant for the 
study, as they exhibit a substantial concentration 
variability that can potentially impact cell culture 
performance, also noticing certain degree of correlation 
between metabolites, which in some cases is 
considerable. Fluctuations detected in those univariate 
graphs also contributed to multivariate analysis 
subsequently.

Additionally, it is also detected a difference of 
magnitude among metabolites concentration, more 
significant in the case of Glucose and Lactate (see a 
summary of univariate statistic graphs here). Since other 
metabolites can have a greater influence even at lower 
proportion in the culture as known elsewhere [25], data 
were standardized via auto-scaling in order to assure a 
proper balance among variables.

a) Characterization of Process Metabolic Progression
through PCA

A model expressed in three principal 
components points out as a proper choice, covering 
around 90% of data variance in calibration and about 
86% in validation, as shown in Figure 1a. In addition, no 
outliers were detected, as can be noticed in Figure 1b. 
Hence, such PCA model can be considered as 
representative of culture metabolic variability and 
adequate for further analysis.

(a)                                           (b)

Figure 1: Explained variance and influence graphs illustrating PCA model adjustment to dataset. (a) X-Variance vs. 
PC’s showing calibration and validation data variance properly covered by 3 PC’s. (b) F-residuals vs. leverage 
showing no outliers



From Figure 2a it can be appreciated that those 
metabolites consumed throughout the batches, such as 
Asn, Gln, Leu, Lys, Met, Ser, Thr, Val, Gluc, Pyr, and 
produced as Gly, can be grouped in PC-1, having 
correlation loadings outside the margin of ±0.7, which 

in regular practice is indicative of the greatest 
contribution to process variability. Furthermore, 
consumed metabolites show a strong correlation among 
each other. 
 

(a)                                                                         (b)

Figure 2: Correlation loadings graphs. (a) Second vs. first principal component, emphasizing impact on process 
variability and correlation of metabolites grouped along PC-1. (b) Third vs. second principal component, showing 
differences in influence on process variability of other metabolites grouped along PC-2 and PC-3 

On the other side, it was found that PC-2, being 
the second major contributor to process variability, 
includes other metabolites such as Phe, Pro, Arg, Ile 
and Asp, having a notable disparity in initial 
concentration due to media differences in composition, 
as can be seen in Figure 2b. Moreover, in the same 
figure is observed that Lactate and Ala metabolites, 
which are first produced and later consumed during the 
batch course, are gathered in PC-3, with a less 
important relative impact on cell culture variability. 

As a complement to the above, the score plot in 
Figure 3a shows a well-defined trajectory of the batches 

from right to left along PC-1 axis, with no remarkable 
differences in metabolites consumption or production 
patterns among nutritional media. 

Concurrently, looking in the direction of PC-2 
axis, batches using culture media M1 and M2 are very 
similar in tendency, as well as those using M3 and M4, 
both trends being distinguishable between each other. 
In addition, Figure 3b confirms there are metabolites first 
produced and later consumed, showing almost no 
differences in content among batches as already 
mentioned.

(a)                                                                         (b)  

Figure 3: Score graphs illustrating batches progression. (a) Second vs. first principal component showing no 
differences in consumption or production of metabolites among nutritional media. (b) Third vs. first principal 
component confirming there are metabolites first produced and later consumed with almost no difference in content 
among batches 

A simultaneous view of both, scores and 
correlation loadings graphs, combined as a bi-plot in 
Figure 4a and Figure 4b, shows that culture samples are 

rich in those metabolites consumed since batches start, 
while Gly as the one produced, reach its higher 
concentration at the end of the culture. 

Determination of Best Nutritional Conditions for a Monoclonal Antibody-Producing Cell Line based on 
a Multivariate Data Analysis Approach

 © 2023    Global Journ als

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

Vo
lu
m
e 

X
xX
II
I 
Is
su

e 
I 
V
 er
si
on

 I
  

 
(

)
J

  
  
 

  

24

Y
e
a
r

20
23



Looking through PC-2 axis it is more evident 
that M1 and M2 have a significant initial content of Phe 
and Pro, as well as M3 and M4 in Arg, Ile and Asp. 

Further, Lactate and Ala come to their highest 
concentration in the middle of culture batches, being 
corroborated its production at first and consumption 
later on. 

 

(a)                                                                   (b) 

Figure 4: Correlation loadings and scores biplot graphs. (a) Second vs. first principal component, showing 
significance of metabolites consumed and produced during the course of batches. (b) Third vs. second principal 
component, showing culture media have a significant content from the start in some metabolites 

   
 

  

Figure 5: Coomans graph from Soft Independent Modeling of Class Analogy confirming differences among culture 
media relative to batches performance

c) Determining Metabolites Influence on Cell Growth 
and mAb Production through PLSR 

Metabolite concentrations relationship with cell 
and IgG concentrations was analyzed via PLSR using 
data from the exponential phase of batch cell growth, 
given its relevance in cell culture process [26]. 
Consequently, a logarithmic transformation of cell 

growth data was applied looking for an approximation to 
a linear behavior. 

Following PLSR procedure, a Martens 
uncertainty test together with full cross validation was 
applied in order to find input variables with more 
significant impact on model’s response [27,28]. In this 
regard, Figure 6a and Figure 6b show in striped-shaded 
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b) Determining Media Differences through SIMCA 
Method

By requiring a more precise differentiation 
among culture media concerning batches performance 
than the one appreciated in the PCA score plot, a 
supervised classification method such as SIMCA was 
applied, using the individual PCA models of each batch.

Through the Coomans plot shown in Figure 5, it 
is confirmed that media M1 and M2 are segregated into 
different classes and at the same time are quite distinct 
to media M3 and M4, while the latter are rather similar. 
Such result is consistent with the fact that media M1 and 
M2 share 30% of their initial composition, whereas M4 is 
the same medium M3 modified with some additives.



 

(a)                                                                   (b) 

Figure 6: Graphs derived from uncertainty test for four factors PLSR model. (a) Weighted regression coefficients 
relative to logarithmic cell concentration showing most significant metabolites in stripe-shaded bars. (b) Weighted 
regression coefficients relative to IgG concentration showing most significant metabolites in stripe-shaded bars 

PLSR model restructured on this basis reach a 
proper fit by using three factors, as observed in Figure 
7a and Figure 7b. In this case, model’s R-Square is 

around 91% in calibration and about 87% in validation, 
showing good data adjustment and acceptable ability of 
estimation for the purposes of subsequent analysis. 

(a)                                                                   (b)  

Figure 7: Predicted vs. reference values graphs from PLSR model adjustment based in three factors. (a) Relative to 
logarithmic cell concentration. (b) Relative to IgG concentration 

The correlation loadings X – Y plots shown in 
Figure 8a and Figure 8b, reassert that incidence pattern 
of metabolites correlated with the output variables is 
comparable with the obtained from PCA model as well. 
It is also noticed that cell growth is closely interrelated to 
mAb generation, as evidence of a substantial interaction 
between them. 

Complementarily, Figure 9 summarize those 
key metabolites influence on cell culture performance, 
based on Martens uncertainty test likewise. 
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bars Arg, Gln, Ile, Leu, Lys, Phe, Ser, Val and Lactate 
metabolites with statistically significant weighted 
regression coefficients, hence with a relevant influence 

on cell growth and mAb generation. The rest of the 
metabolites can be discarded as they do not provide 
useful information and could lead to model overfitting.



 

(a)                                                                   (b)  

Figure 8: Correlation loadings X – Y graphs showing metabolites incidence on logarithmic cell concentration and IgG 
concentration. (a) Second vs first factor. (b) Third vs. first factor

From the analysis integrating both Figures 8a - 
8b and Figure 9 it is inferred that metabolites linked to 
first factor, Lys, Leu, Ser and Gln contribute to cell 
growth and mAb generation as they are consumed, 
while Val only contributes to cell growth. In the case of 
those associated to second factor and related to initial 
concentration in media, Phe has a positive effect on cell 
growth, whereas Arg and Ile have a reverse effect on 

both cell growth and mAb production. In view of these 
findings, extra experiments shall be done to consolidate 
knowledge on the actual influence of their initial 
concentrations in the culture. Concerning Lactate 
metabolite linked to third factor, it does not show a 
significant incidence on cell growth, but on mAb 
concentration in a negative way, which shall be 
discussed later. 

Figure 9: Influence matrix summarizing key metabolites impact on cell culture process according to weighted 
regression coefficients 

As a matter of verifying model’s estimation 
ability for cell growth and mAb production, predicted 
with deviation per batch graphs were obtained as shown 
in Figure 10a and Figure 10b, by plotting reference 
values along with calibration and validation 
computations throughout the four batches in the order 
of score samples. Indeed, both graphs show a proper 
model fit, bounded to used dataset. 
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(a)                                                                   (b)  

Figure 10: Predicted with deviations graphs showing model’s estimation ability by plotting references values, 
calibration and validation curves throughout the four batches in the order of score samples from M1 to M4. (a) 
Relative to logarithmic cell concentration. (b) Relative to IgG concentration 

IV. Discussion 

The above results, derived from early lab 
experimental work, depict the first insights into this 
particular cell culture system, in correspondence with its 
inherent metabolic complexity. 

It was found that Lys, Leu, Val, Gln, and Ser 
metabolites have a major impact onto this cell culture 
process. In the case of Lys, Leu and Val, they are 
consistent with their role of being essential amino acids, 
in conformity with current knowledge so far [25]. 
Therefore, depletion of this substances could take place 
during the course of cell culture batches, and given the 
cells inability to produce them, the culture could end the 
exponential growth phase prematurely. Likewise, Gln is 
widely known as a key metabolite in mammalian cell 
culture due to its important function as a source of 
carbon and nitrogen, in addition to the influence it exerts 
in delaying cell death [29]. Concerning Ser metabolite, is 
also known to be relevant for cell metabolism. A 
deficiency on this metabolite in the culture can trigger 
several negative scenarios causing an imbalance in the 
tetrahydrofolate cycle, which is detrimental to cell growth 
[30]. Moreover, absence of this metabolite can bring on 
phosphatidylserine formation, a component involved in 
signaling and detection of cell death by apoptosis. 

On the other hand, it was also found Arg, Ile 
and Phe metabolites as the second major contributors 
to cell culture behavior regarding their initial content in 
culture media. In fact, culture performance depends on 
cells capability to sense somehow nutrients availability 
at batch start, thereby stimulating the metabolic 
interactions that lead to primary growth and mAb 
generation concurrently. Hence, in the specific case of 
Arg and Ile it should be elucidated if their concentration 
at start exceeds the limit that leads to culture inhibition in 
further studies, which shall also include Phe in search of 
media optimization. 

In regard to Lactate, it is well known that 
glucose/glutamine metabolism leads to formation and 
accumulation of this metabolite, which is more 

accentuated in cell culture batch mode [31]. Although in 
this cell culture system has a minor effect on cell growth, 
it shows a significant negative impact on mAb 
generation. This could be due to the potential effect of 
Lactate to divert cells specific metabolic pathways that 
subsequently lead to a decrease in its specific 
productivity [32]. 

Comparing these results with those obtained in 
other references, the substantial diversity and variability 
in CHO cell culture process is corroborated [33-35]. In 
some cases, a specific amino acid is relevant in a 
positive way, while in others is quite the opposite, or 
does not impact the process at all in certain cases. It 
may even be the case that most favorable cell culture 
nutritional conditions to ensure maximum cell growth 
may not necessarily be the best for cell productivity and 
product quality [36]. Thence the importance of proper 
culture media optimization based on cell specific 
nutritional profile understanding. 

Given the difference among culture media 
derived from the above results, it can be deduced for 
this cell culture process that M1 provides most favorable 
nutritional conditions in terms of the content of those 
amino acids found as key contributors, followed by M4 
in order. Paradoxically, from the economical point of 
view M1 have the highest unit cost, while M4 have the 
lowest. Hence, the alternative of using M4 becomes 
attractive if supplemented with Leu, Lys, Val and Phe in 
similar proportions as in M1, because it already has 
similar contents of Ser and Gln. 

It is recognized that predictability of the MVDA 
models used for analysis is limited given the lack of 
additional data for performing an external validation. 
Nevertheless, the internal validation carried out on such 
models with the available dataset evidenced they have 
an adequate estimation ability to provide, in this early 
research, valuable insights on the cell culture system in 
question, thus assuring the necessary groundwork for 
further studies. 
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V. Conclusion 

The applied MVDA approach showed its 
potential by providing advanced data processing tools 
for achieving this study. It facilitated the understanding 
of metabolic variability in this particular cell culture 
process in batch mode at an early experimental stage, 
as well as disclosing the difference among culture 
media according to their nutritional effect on batches. In 
addition, the PLSR model derived from the available 
dataset contributed to identify those key metabolites 
that benefit cell growth and mAb production and those 
with a negative incidence, thus giving a rationale for the 
proper choice of culture media with most advantageous 
nutritional conditions. Finally, these outcomes offer the 
essentials needed for subsequent media optimization, 
which shall consolidate future scale-up studies. 
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Highlights 

• A strategy is conceived and successfully applied in 
the primary research of a monoclonal antibody 
(mAb)-producing cell line of special interest in 
cancer therapy, in which lab-scale experiments are 
focused specifically on metabolic characterization 
by testing different culture media, thus ensuring the 
most favorable nutritional conditions from an early 

stage of the culture process development as 
prescribed by Quality by Design. 

• Advanced analytics implemented to support the 
experimental work provides, with sufficient reliability, 
the concentration during biochemical reactions 
course of at least 19 metabolites through liquid 
chromatography-mass spectrometry (LC-MS), 
among other special lab determinations. 

• Complexities derived from the analysis of such a 
volume of experimental data are managed 
effectively by applying a multivariate data analysis 
approach to attain data-driven models, which lead 
to key findings that contribute to understand the 
metabolic behavior of this particular cell culture 
process. 

• Best nutritional conditions determined at this stage 
provided the necessary groundwork for subsequent 
culture media composition optimization. In addition, 
such practice can be generalized to deal with similar 
high complex research of this kind in the 
biotechnological domain. 
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