
New Encryption Algorithm with Improved Security1

Dmitriy Shatokhin2

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 19703

4

Abstract5

The design of new cryptographic algorithms, as a rule, has the main goal of improving their6

resistance to cryptanalysis methods. Since cryptanalysis methods are constantly being7

improved, when designing crypto algorithms, it becomes necessary to create new non-standard8

approaches that can effectively resist the existing cryptanalysis methods. This paper describes9

in detail a new crypto algorithm created using an original technique aimed at radically10

improving cryptographic strength. The paper provides both brief theoretical justifications and11

a complete technical description of the crypto algorithm.12

13

Index terms— cryptography, VOMF technique, stream cipher, cryptographic algorithm, special encryption14
technique, information security.15

1 I. Introduction16

ne of the fundamental principles of cryptography is that a cryptanalyst’s detailed knowledge of a crypto algorithm17
should not affect the security of the cryptosystem in any way. All existing methods of cryptanalysis are based,18
one way or another, on a detailed knowledge of the operation of the crypto algorithm under study. It follows that19
if one somehow limits or reduces the knowledge of the cryptanalyst about the work of at least some important20
part of the algorithm used, then the cryptanalysis of such a crypto algorithm will turn out to be much more21
difficult. An example of such an approach is a periodic change in the program code of the encryption function22
of the crypto algorithm, and such a change should be unpredictable for the cryptanalyst -in particular, it can23
be based on the encryption key. That is, in other words, the program code of the encryption function of the24
algorithm (or several functions) is not unchanged and initially defined -instead, during execution it is either25
replaced by an alternative code from a predetermined large set of functions, or is formed as the algorithm works.26
On this principle, a special technique for constructing crypto algorithms with increased security is based ??1].27

This paper describes in detail the synchronous streaming crypto algorithm IMPASE (IMProved Algorithm of28
Stream Encryption), which is one of the practical examples of the use of a special technique ??1], which provides29
for the presence of a variable program code of the encryption function.30

II. Abbreviations and Symbols used KSA: (Key Scheduling Algorithm) is a preliminary procedure for preparing31
data structures and working variables of the main crypto algorithm based on the encryption key. It precedes the32
work of the main crypto algorithm.33

VOMF: (VOlatile Main Function) is a special technique for designing crypto algorithms, which provides for34
the creation of an encryption function (or functions) that changes according to some rules in a crypto algorithm.35

IV: Is the initialization vector. A non-secret value sent along with the encrypted message for initialization.36
+: arithmetic modulo addition. When adding byte values, the addition is performed modulo 256. When adding37
32-bit words, it is performed, respectively, modulo 2 32 . *: arithmetic multiplication modulo 2 32 . «<n: cyclic38
shift of a 32-bit word by n bits to the left. »>n: cyclic shift of a 32-bit word by n bits to the right. «n: logical39
shift of a 32-bit word by n bits to the left. The bits that are pushed into the vacated space are always 0. »n: is40
a logical shift of a 32-bit word by n bits to the right. The bits that are pushed into the vacated space are always41
0. &: is a bitwise AND operation.42

OR: is a bitwise OR operation. XOR: is a bitwise XOR operation.43
||: is the operation of concatenation (connection) of 4 separate bytes into one 32-bit word. < >: is the44

operation of splitting one 32-bit word into 4 separate bytes. ×: is a generic term for some non-linear operation45
performed on two 32-bit words.46

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article:

6 IV. DESCRIPTION OF THE IMPASE ALGORITHM

2 w2b(W):47

(Word-to-Byte) is a function to convert a 32-bit word W to a byte. The conversion is performed by adding48
together all four bytes of the word W modulo 256. The resulting sum of 1 byte is the result of the function.49

All illustrative code fragments in this work are written in the standard C language. Hexadecimal numbers are50
also given in the C format.51

3 III. About the VOMF Technique in the IMPASE Algorithm52

As mentioned above, the use of the VOMF technique in the crypto algorithm design is carried out in order to53
significantly complicate its cryptanalysis. In the general case, for this, the program code of the crypto algorithm54
provides for one or more changing (volatile) functions that perform data transformation, and which can replace55
each other in some pseudo-random way. Such volatile functions can either be predefined or created in some way56
during the execution of the algorithm. In other words, in addition to the uncertainty of key data that is unknown57
to the cryptanalyst, it is also necessary to increase the degree of uncertainty of the operations performed on58
this data. There are many practical ways to do this, and the IMPASE crypto algorithm demonstrates just one59
possible way to use this technique.60

4 a) Volatile Function61

The IMPASE crypto algorithm uses a threeargument volatile function with a common prototype as follows:62
(1) where A, B, and C are 32-bit words, and the sign ”×” denotes some non-linear operation assigned during63

execution on 32-bit words. Operations are performed sequentially from left to right, that is, first the operation64
is performed with arguments A and B, and then -the result of execution with argument C. The order of the65
arguments can be any, that is, F(A,B,C), F(B,C,A), F(C,B,A), etc. Since there are three arguments, the number66
of their possible permutations is 3!, that is, 6. The effective order of the arguments when executing the algorithm67
is determined when executing the key scheduling algorithm (KSA), and is unchanged for the current combination68
of encryption key and initialization vector.69

For this function, 8 special composite non-linear operations have been developed, each of which, as shown in70
(1), performs a transformation on two 32-bit words, and the result of its execution is one 32-bit word. Before71
calling the function, 2 operations out of 8 possible are selected in a pseudo-random way. It is easy to show that72
the number of options for choosing 2 different elements out of 8 possible (taking into account the permutations of73
these 2 elements) is 56, plus 8 more options in the case of identical elements. Then the total number of options74
is 64. Given that the result of the function depends both on the order of the operands and on the selected75
operations, the total number of possible results is 64 * 6 = 384. That is, in other words, 384 variants of the76
volatile function are possible. All these options somehow depend only on the combination of the encryption key77
and the initialization vector, and, as was said, the order of the operands is determined during the execution of the78
KSA, and the operations are selected before the function call, depending on the state of the internal parameters79
of the algorithm.80

An important detail to note is that all these nonlinear operations are designed so that they have the same81
execution time. It is necessary mainly to make runtime cryptanalysis inefficient. This type of cryptanalysis is82
based on the exact measurement of the execution time of individual sections of the program code of the crypto83
algorithm. And although in real practical conditions this type of cryptanalysis is very difficult, nevertheless, its84
possibility must be taken into account.85

Creating nonlinear operations with the same execution time is a rather complicated practical problem, and in86
this algorithm it is solved due to the fact that on most microprocessors, the operations of register cyclic shift,87
logical register shift, addition, OR and XOR operations are performed in the same number of microprocessor88
cycles. By combining these operations in a certain way, it is possible to achieve both a good degree of nonlinearity89
of the result and the same execution time for these composite operations. The following section provides a detailed90
description of these operations.91

5 b) Nonlinear Operations in the Algorithm92

The IMPASE crypto algorithm uses 8 non-linear operations performed in the volatile function described above.93
The following description of these operations assumes that they are performed on operands A and B. Each94
operation also uses a 1-byte auxiliary variable t to store the result of w2b (see Section II), and then truncates t95
to the lowest significant 5 bits. In the IMPASE crypto algorithm, these operations are numbered from 0 to 7. It96
should be noted that when programming the algorithm, it is advisable to create an array of pointers to functions97
that perform these operations, and subsequently call these functions by the number of the array element.98

6 IV. Description of the IMPASE Algorithm99

Strictly speaking, the IMPASE crypto algorithm is not a separate algorithm -it is a whole family of algorithms,100
since by changing a number of its parameters, you can get many other similar algorithms with different101
characteristics. These options are described in more detail in the next section. The following is a description of102
the basic version of the algorithm.103

2

7 a) General Characteristics104

The IMPASE crypto algorithm is a synchronous stream encryption algorithm that generates one pseudorandom105
32-bit word in one cycle of its work. This algorithm is designed primarily for software implementation, but it can106
also be used in specialized controllers. Being a synchronous stream cipher algorithm, it is actually a generator of107
a pseudo-random cryptographic sequence (gamma) with a very large period. The sequence obtained as a result108
of its work can be superimposed on the open data -as a rule, using the ”exclusive OR” operation. Thus, the109
cryptographic strength of such a system is entirely determined by the cryptographic strength of the generated110
sequence. The following are its main characteristics:111

? algorithm type: synchronous stream cipher; ? encryption key size: 384 bits; ? initialization vector size: 32112
bits; ? required amount of memory for internal data: about 2.5 kilobytes; ? predefined data and constants: not113
used; ? output data: crypto-resistant pseudo-random sequence; ? output sequence element: 32-bit word. Some114
other properties and features of this algorithm -such as the period of the output pseudorandom sequence, its115
statistical characteristics, the speed of the algorithm -are described in the next section.116

8 b) Key Scheduling Algorithm (KSA)117

This auxiliary algorithm prepares the internal data of the crypto algorithm based on the encryption key and118
initialization vector. The encryption key, as shown above, has a size of 384 bits and is considered as a sequence of119
8-bit blocks, i.e. bytes. All operations with the encryption key, as well as the initialization vector, are performed120
at the level of an integer number of bytes. Thus, the encryption key must be 48 bytes in size. The initialization121
vector, respectively, has a size of 4 bytes.122

For the operation of the main crypto algorithm, KSA prepares 4 data blocks, which are called S-block123
(Substitution block), P-block (Parameters block), Mblock (Master block) and C-block (Control block). These124
blocks have the following structure: ? The S-block is 8 byte arrays of 256 bytes each.125

Each of these arrays contains a permutation of numbers from 0 to 255, thus being a bijection of an ordered126
array with values from 0 to 255. The permutation in each of the 8 arrays is individual and does not depend on127
other arrays; ? P-block is a byte array of 259 bytes. During operation, 4 consecutive bytes are extracted from it,128
interpreted as one 32-bit word; ? M-block is an array of 8 32-bit words; ? C-block is a 4-byte byte array.129

When KSA is working, the following operations are strictly sequential:130
1. Formation of the C-block. To form a C-block (this is an array of 4 bytes), the first 4 bytes of the encryption131

key are copied into this array. 2. Formation of the M-block and its copy. To form an M-block (this is an array of132
8 32-bit words), the last 32 bytes of the key are copied into this array, forming 8 32-bit words, since each 32-bit133
word occupies 4 bytes. Then a copy of the M-block is created -the same array of 8 32-bit words, further referred134
to as Mcopy in the description. It will take part in further KSA operations.135

9 Creation of a shift register with non-linear feedback.136

To form the remaining blocks, a byte shift register with non-linear feedback is first created, which will be used137
as a generator of pseudo-random bytes. (2)138

In general, the operation of such a register is almost similar to the operation of classical registers with linear139
feedback in the Galois configuration [2], with the difference that it uses not a bit array, but a byte array, as well140
as nonlinear feedback with some features. More details about the operation of shift registers can also be found141
in [3].142

It must be said that the creation and properties of non-linear feedback shift registers is a topic for a separate143
article, but here it is only important to note that the shift register described above generates a statistically good144
pseudo-random byte sequence with a very large period.145

Initially, after creating this register, 128 ”idle” generation cycles are performed -this is necessary for mixing the146
bits of the key and the initialization vector. Further, this shift register is used as a generator of pseudo-random147
bytes to create the following blocks.148

10 Formation of the S-block.149

To form an S-block, each of the 8 256 byte arrays is first filled with ordered values from 0 to 255. Then the array150
is shuffled using a pseudo-random sequence obtained from the shift register described above. [i][j]=sblock[i][n];151
sblock[i][n]=t; } for(j=255;j>=0;j–) { n+=nextbyte(); t=sblock[i][j]; sblock[i][j]=sblock[i][n]; sblock[i][n]=t; } }152

As it follows from this example, shuffling is carried out in two passes -first in the forward direction and then153
vice versa. After that, the formation of the Sblock is over -now all 8 arrays are shuffled independently of each154
other.155

11 Formation of the P-block.156

To form a P-block, the corresponding array of 259 bytes is filled with the next pseudo-random bytes from the157
register. 6. Determination of operand indexes for volatile function. This step determines the order of the158
operands when the function is called. To do this, three-byte variables are used as indexes -ix0, ix1 and ix2. An159
array of 3 32-bit words Opers, is also created to store the operands of the volatile function. Subsequently, these160

3

12 C) MAIN CYCLE OF THE ALGORITHM

byte variables will be used in the main cycle of the algorithm as indexes of the Opers array. To initialize these161
variables, the next pseudo-random byte is first generated from the register, and then the following calculations162
are performed:163

typedef unsigned char byte;164
byte n, ix0, ix1, ix2 n=nextbyte(); ix0=n%3; //ix0 = n mod 3;if(n»7) { //if highest bit = 1 ix1=(ix0+1)%3;165

ix2=(ix1+1)%3; } else { //if highest bit = 0 ix2=(ix0+1)%3; ix1=(ix2+1)%3; }166
As a result, these variables get the values 0, 1, and 2 in some sequence determined by the pseudorandom byte.167

In this way, the order of the operands is determined. This order is further used in the main cycle of the algorithm.168

12 c) Main Cycle of the Algorithm169

The main cycle of the IMPASE crypto algorithm consists of two steps. The first step is to extract the next data170
from the blocks and calculate an intermediate value based on them, and this calculation is performed using a171
volatile function. The second step is to generate a 32-bit output value and modify the data blocks. During the172
operation of the main cycle, the algorithm actively uses the operation of concatenation of 4 separate bytes into173
a 32-bit word, and the reverse operation -the separation of a 32-bit word into 4 separate bytes.174

1. The first step of the main cycle. The scheme of the first step is shown in Fig. ??. The following actions175
are performed:176

? 4 consecutive bytes are extracted from the P-block, starting from the position determined by the first byte177
of the C-block, i.e. the first byte of the C-block is an index to retrieve the bytes from the P-block. The extracted178
bytes are concatenated into a 32-bit word and stored as an element of the Opers[ix2] array. ? similarly, 4 more179
consecutive bytes are extracted from the P-block, starting from the position determined by the second byte of the180
C-block. The extracted bytes are also concatenated into a 32-bit word and stored in the 32-bit Param1 variable.181
? a 32-bit word is extracted from the M-block, while the three highest bits of the third byte of the C-block are182
used as an index. This word is stored as an element of the Opers[ix1] array. ? A 32-bit word is extracted from the183
S-block as follows: the lowest three bits of the third byte of the C-block are used as the number of the 256-byte184
array (from 0 to 7). As an index inside the selected array, the fourth byte of the C-block is used with the two185
lowest bits previously set to zero -this is done to prevent possible overflow of the array. Starting from this index,186
4 consecutive bytes are extracted from the array, concatenated into a 32-bit word, then the resulting word is187
added modulo 2 32 to the Param1 variable, and the result is stored as an element of the Opers[ix0] array. ? the188
lowest three bits of the first byte of the C-block are stored in the variable Op1. This is the number of the first189
non-linear operation for a volatile function. ? the lowest three bits of the second byte of the Cblock are stored190
in the variable Op2. This is the number of the second non-linear operation for a volatile function. ? a volatile191
function of the form (1) is called, while the three operands of this function are stored as elements of the Opers192
array, and the numbers of non-linear operations are stored in the variables Op1 and Op2. First, the operation193
is performed on the elements Oper[0] and Oper[1], and then on the result and the element Oper ??2]. The final194
result of the calculation is one 32-bit word. It is stored in the Temp variable and used further in the second step195
of the main cycle.196

? separate bytes are extracted from the S-block as follows. The 32-bit variables Param1 and Temp are197
separated by 4 bytes each. The lowest three bits of each byte of the Param1 variable serve as the numbers (0..7)198
of the 4 arrays in the S-block, and each of the 4 bytes of the Temp variable is an index (0..255) for extracting a byte199
from the corresponding array. For example, if the lowest three bits of each of the 4 bytes of the Param1 variable200
are equal to 4,5,0 and 7, and the four bytes of the Temp variable are equal to 95,144,67 and 201, respectively,201
then a byte will be extracted from the 4th S-block array by index 95, from the 5th array -byte at index 144, from202
the 0th array -byte at index 67, and from the 7th array -byte at index 201. The 4 bytes obtained in this way are203
concatenated into a 32-bit value, which is the output 32-bit word of the algorithm. ? P-block is modified. To do204
this, those 4 bytes of the P-block that were used in the first step, and position of which was determined by the205
first byte of the Cblock, are interpreted as a 32-bit word. This word is added modulo 2 32 to the Temp variable206
(which stores the result of evaluating the volatile function).207

? M-block is modified. To do this, the element of the array that was selected at the first step (its index is208
determined as the value of the three highest bits of the third byte of the C-block) is added modulo 2 32 to the209
Param1 variable. ? C-block is modified. To do this, 4 bytes of the Cblock are concatenated into a 32-bit word,210
which is added modulo 2 32 to the array element Opers[ix0] (this array element, as described above, stores the211
32-bit word extracted from the S-block, added to the Param1 variable).212

This completes the main cycle of the algorithm. To generate the next word, the main cycle of the algorithm213
is repeated. From the description of the main cycle, it can be seen that when generating the output 32-bit word,214
the algorithm performs a double non-linear transformation: the first is for non-linear operations of calculating215
an intermediate value, which is performed by a volatile function, and the second is for fetching output bytes216
from the S-block, which is actually a non-linear replacement operation. A necessary condition for the operation217
of any stream crypto algorithm is, in addition to cryptographic strength, good statistical characteristics of the218
generated pseudo-random sequence. For the IMPASE algorithm, the statistical analysis of the generated sequence219
was performed in accordance with the recommended set of statistical tests for pseudorandom sequences [4]. For220
testing, 16384 32-bit words were generated, which in total is 64 kilobytes.221

It should be noted that, as in most crypto algorithms, in IMPASE changing at least one bit of the encryption222

4

key or initialization vector leads to a complete change in the entire generated sequence, since (as described above)223
leads to a complete change in the results of the shift register and, accordingly, to a complete change in at least the224
S-block and P-block. Therefore, statistical tests were carried out for 50 different, completely random, encryption225
keys and initialization vectors. In all cases, very good test results were obtained.226

13 b) Crypto Algorithm Performance227

The pseudo-random sequence generation speed was evaluated on an Intel Core i3 processor with a clock frequency228
of 3.0 Mhz, on the core of the MS-DOS operating system. This operating system was chosen due to the fact229
that, due to the absence of thirdparty processes, the maximum performance of iterative algorithms is achieved on230
it (unlike Windows and Linux OS). In addition, the MS-DOS kernel is often used in specialized controllers. To231
evaluate the performance, the algorithm was implemented in the C language, and the Watcom C v9.5a optimizing232
compiler was used to compile the program. All possible optimizations were made, both at the level of the program233
code and in the compiler settings. For comparison, we measured the performance of the RC4 algorithms, as well234
as AES (10 rounds, OFB mode) under the same conditions. The RC4 algorithm was chosen for comparison235
because it is one of the stream crypto algorithms, and the AES algorithm because it is the current standard. The236
IMPASE algorithm had a generation rate of 940 Mbps, while the RC4 algorithm had 2200 Mbps, and the AES237
algorithm had 180 Mbps. It can be assumed that when the algorithm is implemented in the Assembler language,238
the performance can be significantly improved.239

14 c) Possible Algorithm Modifications240

As noted above, the IMPASE algorithm is actually a whole family of algorithms. By changing a number of its241
parameters, one can obtain crypto algorithms with other properties. The following are the parameters that can242
significantly affect the properties of the generated sequence: ? the number of arrays in the S-block. Increasing243
the number of arrays will lead to even more cryptographic strength, but will require more memory to work with,244
and increase the KSA running time. In the described basic version, the S-block contains 8 arrays and, according245
to our estimates, this is the minimum required number. ? increasing in the number of non-linear operations for246
a volatile function. Such an increase will also increase cryptographic strength, since it will lead to an increase in247
the number of options for a volatile function. However, it must be remembered that the operations must have248
a high degree of non-linearity, and also have the same execution time -this is the most difficult condition. ?249
increasing the number of operands in a nonconstant function. Such an increase will also increase cryptographic250
strength, however, it will lead to an increase in the generation time of the output value and, accordingly, to an251
increase in the generation time of the entire sequence. ? changing the way data blocks are generated.252

Instead of the existing non-linear feedback shift register, a simpler and faster way to populate and shuffle253
algorithm data blocks can be designed. This may lead to a simplification of the KSA. However, it must be254
remembered that the algorithm for preparing data blocks should not contain easily traceable linear dependencies255
-this can lead to a noticeable drop in the cryptographic strength of the entire algorithm.256

15 VI. Conclusion257

This paper describes in detail a method for creating cryptographic algorithms with increased cryptographic258
strength based on the VOMF technique, and also describes in detail the IMPASE stream crypto algorithm created259
using this technique, and which is a practical example of its use. It should be noted that the implementation of260
this technique in the IMPASE algorithm is very simple and intuitive. However, this is only one of the possible261
ways to apply the VOMF technique -there are many other, more complex ways. In addition, a similar approach262
can be very successfully implemented also in the design of block crypto algorithms -at present, we are completing263
tests of a block crypto algorithm built using the same technique.264

We hope that this work will be useful for understanding the aspects of improving cryptographic strength in265
the design and analysis of cryptographic algorithms.266

5

15 VI. CONCLUSION

6

[Professional] , Addison-Wesley Professional .267

[Schneier ()] Applied cryptography, B Schneier . 1996. John Wiley & Sons. (Second edition)268

[Knuth] Donald E Knuth . Seminumerical Algorithms, 2. (3rd ed.)269

7

	1 I. Introduction
	2 w2b(W):
	3 III. About the VOMF Technique in the IMPASE Algorithm
	4 a) Volatile Function
	5 b) Nonlinear Operations in the Algorithm
	6 IV. Description of the IMPASE Algorithm
	7 a) General Characteristics
	8 b) Key Scheduling Algorithm (KSA)
	9 Creation of a shift register with non-linear feedback.
	10 Formation of the S-block.
	11 Formation of the P-block.
	12 c) Main Cycle of the Algorithm
	13 b) Crypto Algorithm Performance
	14 c) Possible Algorithm Modifications
	15 VI. Conclusion

