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New Encryption Algorithm with Improved 
Security
Dmitriy Shatokhin

Abstract- The design of new cryptographic algorithms, as a 
rule, has the main goal of improving their resistance to 
cryptanalysis methods. Since cryptanalysis methods are 
constantly being improved, when designing crypto algorithms, 
it becomes necessary to create new non-standard approaches 
that can effectively resist the existing cryptanalysis methods. 
This paper describes in detail a new crypto algorithm created 
using an original technique aimed at radically improving 
cryptographic strength. The paper provides both brief 
theoretical justifications and a complete technical description 
of the crypto algorithm.
Keywords: cryptography, VOMF technique, stream 
cipher, cryptographic algorithm, special encryption 
technique, information security.

I. Introduction

ne of the fundamental principles of cryptography 
is that a cryptanalyst's detailed knowledge of a 
crypto algorithm should not affect the security of 

the cryptosystem in any way. All existing methods of 
cryptanalysis are based, one way or another, on a 
detailed knowledge of the operation of the crypto 
algorithm under study. It follows that if one somehow 
limits or reduces the knowledge of the cryptanalyst 
about the work of at least some important part of the 
algorithm used, then the cryptanalysis of such a crypto 
algorithm will turn out to be much more difficult. An 
example of such an approach is a periodic change in 
the program code of the encryption function of the 
crypto algorithm, and such a change should be 
unpredictable for the cryptanalyst - in particular, it can 
be based on the encryption key. That is, in other words, 
the program code of the encryption function of the 
algorithm (or several functions) is not unchanged and 
initially defined - instead, during execution it is either 
replaced by an alternative code from a predetermined 
large set of functions, or is formed as the algorithm 
works. On this principle, a special technique for 
constructing crypto algorithms with increased security is 
based [1].

This paper describes in detail the synchronous 
streaming crypto algorithm IMPASE (IMProved 
Algorithm of Stream Encryption), which is one of the 
practical examples of the use of a special technique [1], 

which provides for the presence of a variable program 
code of the encryption function.

II. Abbreviations and Symbols used

KSA: (Key Scheduling Algorithm) is a preliminary 
procedure for preparing data structures and working 
variables of the main crypto algorithm based on the 
encryption key. It precedes the work of the main crypto 
algorithm.

VOMF: (VOlatile Main Function) is a special technique 
for designing crypto algorithms, which provides for the 
creation of an encryption function (or functions) that 
changes according to some rules in a crypto algorithm.

IV: Is the initialization vector. A non-secret value sent 
along with the encrypted message for initialization.

+: arithmetic modulo addition. When adding byte 
values, the addition is performed modulo 256. When 
adding 32-bit words, it is performed, respectively, 
modulo 232.

*: arithmetic multiplication modulo 232.

<<<n: cyclic shift of a 32-bit word by n bits to the left.
>>>n: cyclic shift of a 32-bit word by n bits to the right.

<<n: logical shift of a 32-bit word by n bits to the left. 
The bits that are pushed into the vacated space are 
always 0.

>>n: is a logical shift of a 32-bit word by n bits to the 
right. The bits that are pushed into the vacated space 
are always 0.

&: is a bitwise AND operation.

OR: is a bitwise OR operation.
XOR: is a bitwise XOR operation.

||: is the operation of concatenation (connection) of 4 
separate bytes into one 32-bit word.

< >: is the operation of splitting one 32-bit word into 4 
separate bytes.
×: is a generic term for some non-linear operation 
performed on two 32-bit words.

w2b(W): (Word-to-Byte) is a function to convert a 32-bit 
word W to a byte. The conversion is performed by 
adding together all four bytes of the word W modulo 
256. The resulting sum of 1 byte is the result of the 
function.

O
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All illustrative code fragments in this work are 
written in the standard C language. Hexadecimal 
numbers are also given in the C format. 

III. About the VOMF Technique in the 
IMPASE Algorithm 

As mentioned above, the use of the VOMF 
technique in the crypto algorithm design is carried out in 
order to significantly complicate its cryptanalysis. In the 
general case, for this, the program code of the crypto 
algorithm provides for one or more changing (volatile) 
functions that perform data transformation, and which 
can replace each other in some pseudo-random way. 
Such volatile functions can either be predefined or 
created in some way during the execution of the 
algorithm. In other words, in addition to the uncertainty 
of key data that is unknown to the cryptanalyst, it is also 
necessary to increase the degree of uncertainty of the 
operations performed on this data. There are many 
practical ways to do this, and the IMPASE crypto 
algorithm demonstrates just one possible way to use 
this technique. 

a) Volatile Function 
The IMPASE crypto algorithm uses a three-

argument volatile function with a common prototype as 
follows: 

                (1) 

where A, B, and C are 32-bit words, and the sign "×" 
denotes some non-linear operation assigned during 
execution on 32-bit words. Operations are performed 
sequentially from left to right, that is, first the operation is 
performed with arguments A and B, and then – the 
result of execution with argument C. The order of the 
arguments can be any, that is, F(A,B,C), F(B,C,A), 
F(C,B,A), etc. Since there are three arguments, the 
number of their possible permutations is 3!, that is, 6. 
The effective order of the arguments when executing the 
algorithm is determined when executing the key 
scheduling algorithm (KSA), and is unchanged for the 
current combination of encryption key and initialization 
vector. 

For this function, 8 special composite non-linear 
operations have been developed, each of which, as 
shown in (1), performs a transformation on two 32-bit 
words, and the result of its execution is one 32-bit word. 
Before calling the function, 2 operations out of 8 
possible are selected in a pseudo-random way. It is 
easy to show that the number of options for choosing 2 
different elements out of 8 possible (taking into account 
the permutations of these 2 elements) is 56, plus 8 more 
options in the case of identical elements. Then the total 
number of options is 64. Given that the result of the 
function depends both on the order of the operands and 
on the selected operations, the total number of possible 
results is 64 * 6 = 384. That is, in other words, 384 

variants of the volatile function are possible. All these 
options somehow depend only on the combination of 
the encryption key and the initialization vector, and, as 
was said, the order of the operands is determined 
during the execution of the KSA, and the operations are 
selected before the function call, depending on the state 
of the internal parameters of the algorithm. 

An important detail to note is that all these non-
linear operations are designed so that they have the 
same execution time. It is necessary mainly to make run-
time cryptanalysis inefficient. This type of cryptanalysis 
is based on the exact measurement of the execution 
time of individual sections of the program code of the 
crypto algorithm. And although in real practical 
conditions this type of cryptanalysis is very difficult, 
nevertheless, its possibility must be taken into account. 

Creating nonlinear operations with the same 
execution time is a rather complicated practical 
problem, and in this algorithm it is solved due to the fact 
that on most microprocessors, the operations of register 
cyclic shift, logical register shift, addition, OR and XOR 
operations are performed in the same number of 
microprocessor cycles. By combining these operations 
in a certain way, it is possible to achieve both a good 
degree of nonlinearity of the result and the same 
execution time for these composite operations. The 
following section provides a detailed description of 
these operations. 
b) Nonlinear Operations in the Algorithm 

The IMPASE crypto algorithm uses 8 non-linear 
operations performed in the volatile function described 
above. The following description of these operations 
assumes that they are performed on operands A and B. 
Each operation also uses a 1-byte auxiliary variable t to 
store the result of w2b (see Section II), and then 
truncates t to the lowest significant 5 bits. 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

 
 

 
 

New Encryption Algorithm with Improved Security

 © 2023    Global Journ als

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

Vo
lu
m
e 

X
xX
II
I 
Is
su

e 
I 
V
 er
si
on

 I
  

 
(

)
J

  
  
 

  

34

Y
e
a
r

20
23

F (A, B, C) = A × B × C

1. Operation LrotXor (Left Rotate and XOR)
Usage: LrotXor (A,B)
t=w2b(B) & 0x1F;
LrotXor=(A<<<t) XOR (B>>(32-t));
2. Operation LrotAdd (Left Rotate and Addition)
Usage: LrotAdd(A,B)
t=w2b(B) & 0x1F;
LrotAdd=(A<<<t) + (B<<(32-t));
3. Operation LshOr (Left Shift and OR)
Usage: LshOr(A,B)
t=w2b(B) & 0x1F;
LshOr=(A<<t) OR (B>>(32-t));
4. Operation LshAdd (Left Shift and Addition)
Usage: LshAdd(A,B)
t=w2b(B) & 0x1F;
LshAdd=(A<<(32-t)) + (B<<<t);
5. Operation RrotXor (Right Rotate and XOR)
Usage: RrotXor(A,B)
t=w2b(B) & 0x1F;
RrotXor=(A>>>t) XOR (B<<(32-t));



   
 

 
 

  
 

 
 

  
 

 
 

In the IMPASE crypto algorithm, these 
operations are numbered from 0 to 7. It should be noted 
that when programming the algorithm, it is advisable to 
create an array of pointers to functions that perform 
these operations, and subsequently call these functions 
by the number of the array element. 

IV. Description of the IMPASE Algorithm 

Strictly speaking, the IMPASE crypto algorithm 
is not a separate algorithm - it is a whole family of 
algorithms, since by changing a number of its 
parameters, you can get many other similar algorithms 
with different characteristics. These options are 
described in more detail in the next section. The 
following is a description of the basic version of the 
algorithm. 

a) General Characteristics 
The IMPASE crypto algorithm is a synchronous 

stream encryption algorithm that generates one pseudo-
random 32-bit word in one cycle of its work. This 
algorithm is designed primarily for software 
implementation, but it can also be used in specialized 
controllers. Being a synchronous stream cipher 
algorithm, it is actually a generator of a pseudo-random 
cryptographic sequence (gamma) with a very large 
period. The sequence obtained as a result of its work 
can be superimposed on the open data - as a rule, 
using the "exclusive OR" operation. Thus, the 
cryptographic strength of such a system is entirely 
determined by the cryptographic strength of the 
generated sequence. The following are its main 
characteristics: 

− algorithm type: synchronous stream cipher; 
− encryption key size: 384 bits; 
− initialization vector size: 32 bits; 
− required amount of memory for internal data: about 

2.5 kilobytes; 
− predefined data and constants: not used; 
− output data: crypto-resistant pseudo-random 

sequence; 
− output sequence element: 32-bit word. 

Some other properties and features of this 
algorithm - such as the period of the output pseudo-
random sequence, its statistical characteristics, the 
speed of the algorithm - are described in the next 
section. 

b) Key Scheduling Algorithm (KSA) 
This auxiliary algorithm prepares the internal 

data of the crypto algorithm based on the encryption key 
and initialization vector. The encryption key, as shown 
above, has a size of 384 bits and is considered as a 
sequence of 8-bit blocks, i.e. bytes. All operations with 
the encryption key, as well as the initialization vector, are 
performed at the level of an integer number of bytes. 
Thus, the encryption key must be 48 bytes in size. The 
initialization vector, respectively, has a size of 4 bytes. 

For the operation of the main crypto algorithm, 
KSA prepares 4 data blocks, which are called S-block 
(Substitution block), P-block (Parameters block), M-
block (Master block) and C-block (Control block). These 
blocks have the following structure: 

− The S-block is 8 byte arrays of 256 bytes each. 
Each of these arrays contains a permutation of 
numbers from 0 to 255, thus being a bijection of an 
ordered array with values from 0 to 255. The 
permutation in each of the 8 arrays is individual and 
does not depend on other arrays; 

− P-block is a byte array of 259 bytes. During 
operation, 4 consecutive bytes are extracted from it, 
interpreted as one 32-bit word; 

− M-block is an array of 8 32-bit words; 
− C-block is a 4-byte byte array. 

When KSA is working, the following operations 
are strictly sequential: 

1. Formation of the C-block. To form a C-block (this is 
an array of 4 bytes), the first 4 bytes of the 
encryption key are copied into this array. 

2. Formation of the M-block and its copy. To form an 
M-block (this is an array of 8 32-bit words), the last 
32 bytes of the key are copied into this array, 
forming 8 32-bit words, since each 32-bit word 
occupies 4 bytes. Then a copy of the M-block is 
created - the same array of 8 32-bit words, further 
referred to as Mcopy in the description. It will take 
part in further KSA operations. 

3. Creation of a shift register with non-linear feedback. 
To form the remaining blocks, a byte shift register 
with non-linear feedback is first created, which will 
be used as a generator of pseudo-random bytes. 
The operation scheme of such a register is shown in 
Fig.1. To do this, the first 16 bytes of the key are 
copied into a separate 16-byte array Reg, and then 
in this array the first 4 bytes are replaced by 4 bytes 
of the initialization vector. Further, the array Reg is 
used as a shift register with non-linear feedback. To 
implement the feedback mechanism, the previously 
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6. Operation RrotAdd (Right Rotate and Addition)
Usage: RrotAdd(A,B)
t=w2b(B) & 0x1F;
RrotAdd=(A>>>t) XOR (B>>(32-t));

7. Operation RshOr (Right Shift and OR)
Usage: RshOr(A,B)
t=w2b(B) & 0x1F;
RshOr=(A>>t) OR (B<<(32-t));

8. Operation RshAdd (Right Shift and Addition)
Usage: RshAdd(A,B)
t=w2b(B) & 0x1F;
RshAdd=(A>>(32-t)) + (B>>>t);



created Mcopy array of 8 32-bit words is used. A 
primitive feedback polynomial of the 16th degree as 
follows is also used: 

            (2) 

In general, the operation of such a register is 
almost similar to the operation of classical registers with 
linear feedback in the Galois configuration [2], with the 
difference that it uses not a bit array, but a byte array, as 
well as nonlinear feedback with some features. More 
details about the operation of shift registers can also be 
found in [3]. 

It must be said that the creation and properties 
of non-linear feedback shift registers is a topic for a 
separate article, but here it is only important to note that 
the shift register described above generates a 

statistically good pseudo-random byte sequence with a 
very large period. 

Initially, after creating this register, 128 "idle" 
generation cycles are performed - this is necessary for 
mixing the bits of the key and the initialization vector. 
Further, this shift register is used as a generator of 
pseudo-random bytes to create the following blocks. 

4. Formation of the S-block. To form an S-block, each 
of the 8 256 byte arrays is first filled with ordered 
values from 0 to 255. Then the array is shuffled 
using a pseudo-random sequence obtained from 
the shift register described above. The following C 
program fragment illustrates this process. The 
nextbyte() function is supposed to return the next 
pseudo-random byte from the register. You also 
need to remember that in C, arrays are numbered 
from zero: 

typedef unsigned char byte; 

int i,j; 

byte sblock[8][256]; 

byte t,n; 

for(i=0;i<8;i++) 

         for(j=0;j<256;j++) sblock[i][j]=j; //filling from 0 to 255 

for(i=0;i<8;i++) { 

         n=0; 

         for(j=0;j<256;j++) { //mixing 

             n+=nextbyte(); t=sblock[i][j]; 

             sblock[i][j]=sblock[i][n]; sblock[i][n]=t; 

         } 

         for(j=255;j>=0;j--) { 

             n+=nextbyte(); t=sblock[i][j]; 

             sblock[i][j]=sblock[i][n]; sblock[i][n]=t; 
         } 

} 

As it follows from this example, shuffling is 
carried out in two passes - first in the forward direction 
and then vice versa. After that, the formation of the S-
block is over - now all 8 arrays are shuffled 
independently of each other. 

5. Formation of the P-block. To form a P-block, the 
corresponding array of 259 bytes is filled with the 
next pseudo-random bytes from the register. 

6. Determination of operand indexes for volatile 
function. This step determines the order of the 
operands when the function is called. To do this, 
three-byte variables are used as indexes - ix0, ix1 
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P(X) = X16 + X5 + X4 + X3 + 1



and ix2.  An array of 3 32-bit words Opers, is also 
created to store the operands of the volatile 
function. Subsequently, these byte variables will be 
used in the main cycle of the algorithm as indexes 

of the Opers array. To initialize these variables, the 
next pseudo-random byte is first generated from the 
register, and then the following calculations are 
performed: 

typedef unsigned char byte;
 

byte n, ix0, ix1, ix2 

n=nextbyte();  

ix0=n%3;      //ix0 = n mod 3; 

if(n>>7) {      //if highest bit = 1 

  ix1=(ix0+1)%3; ix2=(ix1+1)%3; 

  } else {       //if highest bit = 0 

ix2=(ix0+1)%3; ix1=(ix2+1)%3;  

} 

As a result, these variables get the values 0, 1, 
and 2 in some sequence determined by the pseudo-
random byte. In this way, the order of the operands is 
determined. This order is further used in the main cycle 
of the algorithm. 

c) Main Cycle of the Algorithm 
The main cycle of the IMPASE crypto algorithm 

consists of two steps. The first step is to extract the next 
data from the blocks and calculate an intermediate 
value based on them, and this calculation is performed 
using a volatile function. The second step is to generate 
a 32-bit output value and modify the data blocks. During 
the operation of the main cycle, the algorithm actively 
uses the operation of concatenation of 4 separate bytes 
into a 32-bit word, and the reverse operation - the 
separation of a 32-bit word into 4 separate bytes. 

1. The first step of the main cycle. The scheme of the 
first step is shown in Fig.2. The following actions are 
performed: 

− 4 consecutive bytes are extracted from the P-block, 
starting from the position determined by the first 
byte of the C-block, i.e. the first byte of the C-block 
is an index to retrieve the bytes from the P-block. 
The extracted bytes are concatenated into a 32-bit 
word and stored as an element of the Opers[ix2] 
array. 

− similarly, 4 more consecutive bytes are extracted 
from the P-block, starting from the position 
determined by the second byte of the C-block. The 
extracted bytes are also concatenated into a 32-bit 
word and stored in the 32-bit Param1 variable. 

− a 32-bit word is extracted from the M-block, while 
the three highest bits of the third byte of the C-block 

are used as an index. This word is stored as an 
element of the Opers[ix1] array. 

− A 32-bit word is extracted from the S-block as 
follows: the lowest three bits of the third byte of the 
C-block are used as the number of the 256-byte 
array (from 0 to 7). As an index inside the selected 
array, the fourth byte of the C-block is used with the 
two lowest bits previously set to zero - this is done 
to prevent possible overflow of the array. Starting 
from this index, 4 consecutive bytes are extracted 
from the array, concatenated into a 32-bit word, 
then the resulting word is added modulo 232 to the 
Param1 variable, and the result is stored as an 
element of the Opers[ix0] array. 

− the lowest three bits of the first byte of the C-block 
are stored in the variable Op1. This is the number of 
the first non-linear operation for a volatile function. 

− the lowest three bits of the second byte of the C-
block are stored in the variable Op2. This is the 
number of the second non-linear operation for a 
volatile function. 

− a volatile function of the form (1) is called, while the 
three operands of this function are stored as 
elements of the Opers array, and the numbers of 
non-linear operations are stored in the variables 
Op1 and Op2. First, the operation is performed on 
the elements Oper[0] and Oper[1], and then on the 
result and the element Oper[2]. The final result of 
the calculation is one 32-bit word. It is stored in the 
Temp variable and used further in the second step 
of the main cycle. 

2. The second step of the main cycle. The scheme of 
the second step is shown in Fig.3. The following 
actions are performed: 

New Encryption Algorithm with Improved Security
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− separate bytes are extracted from the S-block as 
follows. The 32-bit variables Param1 and Temp are 
separated by 4 bytes each. The lowest three bits of 
each byte of the Param1 variable serve as the 
numbers (0..7) of the 4 arrays in the S-block, and 
each of the 4 bytes of the Temp variable is an index 
(0..255) for extracting a byte from the corresponding 
array. For example, if the lowest three bits of each of 
the 4 bytes of the Param1 variable are equal to 4,5,0 
and 7, and the four bytes of the Temp variable are 
equal to 95,144,67 and 201, respectively, then a 
byte will be extracted from the 4th S-block array by 
index 95, from the 5th array - byte at index 144, from 
the 0th array - byte at index 67, and from the 7th 
array - byte at index 201. The 4 bytes obtained in 
this way are concatenated into a 32-bit value, which 
is the output 32-bit word of the algorithm. 

− P-block is modified. To do this, those 4 bytes of the 
P-block that were used in the first step, and position 
of which was determined by the first byte of the C-
block, are interpreted as a 32-bit word. This word is 
added modulo 232 to the Temp variable (which 
stores the result of evaluating the volatile function). 

− M-block is modified. To do this, the element of the 
array that was selected at the first step (its index is 
determined as the value of the three highest bits of 
the third byte of the C-block) is added modulo 232 to 
the Param1 variable. 

− C-block is modified. To do this, 4 bytes of the C-
block are concatenated into a 32-bit word, which is 
added modulo 232 to the array element Opers[ix0] 
(this array element, as described above, stores the 
32-bit word extracted from the S-block, added to the 
Param1 variable). 

This completes the main cycle of the algorithm. 
To generate the next word, the main cycle of the 
algorithm is repeated. From the description of the main 
cycle, it can be seen that when generating the output 
32-bit word, the algorithm performs a double non-linear 
transformation: the first is for non-linear operations of 
calculating an intermediate value, which is performed by 
a volatile function, and the second is for fetching output 
bytes from the S-block, which is actually a non-linear 
replacement operation. 

B15 B14 B13 … B5 B4 B3 B2 B1 B0 Output

Mcopy[i]=Mcopy[i]*B0
Mcopy[i]=Mcopy[i]+Mcopy[(i+1)%8]
t=w2b(Mcopy[i])
i=(i+1)%8

Start point: i=0

Mcopy, 8 32-bit words

+ + +

t

step1

step1

step2
step3

Figure 1: Scheme of Non-linear Feedback Shift Register
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…

0 1 2 7

C1 C2 C3 C4

S-block

C-block

P-block

3 lowest bits

3 lowest bits
Op1

Op2

3 lowest bits

M-block
3 highest bits

Param1

Opers[3]

32-bit word+

Volatile Function

Temp (32-bit)

Figure 2: Scheme of the First Step of Main Cycle 

…

0 1 2 7

C1 C2 C3 C4

S-block

C-block
P-block

M-block

Temp (32-bit) Param1 (32-bit)
<>

3 lowest bits
<>

32-bit word

Output

+

+

Opers[ix0]

||
32-bit word +

<>

Figure 3: Scheme of the Second Step of Main Cycle 

V. Properties of the IMPASE Algorithm 

a) Statistical Properties of the Generated Sequence 
A necessary condition for the operation of any 

stream crypto algorithm is, in addition to cryptographic 
strength, good statistical characteristics of the 
generated pseudo-random sequence. For the IMPASE 
algorithm, the statistical analysis of the generated 

sequence was performed in accordance with the 
recommended set of statistical tests for pseudorandom 
sequences [4]. For testing, 16384 32-bit words were 
generated, which in total is 64 kilobytes. 

It should be noted that, as in most crypto 
algorithms, in IMPASE changing at least one bit of the 
encryption key or initialization vector leads to a complete 
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change in the entire generated sequence, since (as 
described above) leads to a complete change in the 
results of the shift register and, accordingly, to a 
complete change in at least the S-block and P-block. 
Therefore, statistical tests were carried out for 50 
different, completely random, encryption keys and 
initialization vectors. In all cases, very good test results 
were obtained. 

b) Crypto Algorithm Performance 
The pseudo-random sequence generation 

speed was evaluated on an Intel Core i3 processor with 
a clock frequency of 3.0 Mhz, on the core of the MS-
DOS operating system. This operating system was 
chosen due to the fact that, due to the absence of third-
party processes, the maximum performance of iterative 
algorithms is achieved on it (unlike Windows and Linux 
OS). In addition, the MS-DOS kernel is often used in 
specialized controllers. To evaluate the performance, the 
algorithm was implemented in the C language, and the 
Watcom C v9.5a optimizing compiler was used to 
compile the program. All possible optimizations were 
made, both at the level of the program code and in the 
compiler settings. For comparison, we measured the 
performance of the RC4 algorithms, as well as AES (10 
rounds, OFB mode) under the same conditions. The 
RC4 algorithm was chosen for comparison because it is 
one of the fastest stream crypto algorithms, and the AES 
algorithm because it is the current standard. The 
IMPASE algorithm had a generation rate of 940 Mbps, 
while the RC4 algorithm had 2200 Mbps, and the AES 
algorithm had 180 Mbps. It can be assumed that when 
the algorithm is implemented in the Assembler 
language, the performance can be significantly 
improved. 

c) Possible Algorithm Modifications 
As noted above, the IMPASE algorithm is 

actually a whole family of algorithms. By changing a 
number of its parameters, one can obtain crypto 
algorithms with other properties. The following are the 
parameters that can significantly affect the properties of 
the generated sequence: 

− the number of arrays in the S-block. Increasing the 
number of arrays will lead to even more 
cryptographic strength, but will require more 
memory to work with, and increase the KSA running 
time. In the described basic version, the S-block 
contains 8 arrays and, according to our estimates, 
this is the minimum required number. 

− increasing in the number of non-linear operations for 
a volatile function. Such an increase will also 
increase cryptographic strength, since it will lead to 
an increase in the number of options for a volatile 
function. However, it must be remembered that the 
operations must have a high degree of non-linearity, 

and also have the same execution time - this is the 
most difficult condition. 

− increasing the number of operands in a non-
constant function. Such an increase will also 
increase cryptographic strength, however, it will lead 
to an increase in the generation time of the output 
value and, accordingly, to an increase in the 
generation time of the entire sequence. 

− changing the way data blocks are generated. 
Instead of the existing non-linear feedback shift 
register, a simpler and faster way to populate and 
shuffle algorithm data blocks can be designed. This 
may lead to a simplification of the KSA. However, it 
must be remembered that the algorithm for 
preparing data blocks should not contain easily 
traceable linear dependencies - this can lead to a 
noticeable drop in the cryptographic strength of the 
entire algorithm. 

VI. Conclusion 

This paper describes in detail a method for 
creating cryptographic algorithms with increased 
cryptographic strength based on the VOMF technique, 
and also describes in detail the IMPASE stream crypto 
algorithm created using this technique, and which is a 
practical example of its use. It should be noted that the 
implementation of this technique in the IMPASE 
algorithm is very simple and intuitive. However, this is 
only one of the possible ways to apply the VOMF 
technique - there are many other, more complex ways. 
In addition, a similar approach can be very successfully 
implemented also in the design of block crypto 
algorithms - at present, we are completing tests of a 
block crypto algorithm built using the same technique. 

We hope that this work will be useful for 
understanding the aspects of improving cryptographic 
strength in the design and analysis of cryptographic 
algorithms. 
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