
© 2023. Dmitriy Shatokhin. This research/review article is distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of
the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Researches in Engineering: J
General Engineering
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

New Encryption Algorithm with Improved Security

 By Dmitriy Shatokhin
 Abstract-

The design of new cryptographic algorithms, as a rule, has the main goal of improving

their resistance to cryptanalysis methods. Since cryptanalysis methods are constantly being
improved, when designing crypto algorithms, it becomes necessary to create new non-standard
approaches that can effectively resist the existing cryptanalysis methods. This paper describes in
detail a new crypto algorithm created using an original technique aimed at radically improving
cryptographic strength. The paper provides both brief theoretical justifications and a complete
technical description of the crypto algorithm.

Keywords:

cryptography, VOMF technique, stream cipher, cryptographic algorithm, special
encryption technique, information security.

GJRE-J Classification:

DDC Code: 005.1 LCC Code: QA76.6

NewEncryptionAlgorithmwithImprovedSecurity

Strictly as per the compliance and regulations of:

New Encryption Algorithm with Improved
Security
Dmitriy Shatokhin

Abstract- The design of new cryptographic algorithms, as a
rule, has the main goal of improving their resistance to
cryptanalysis methods. Since cryptanalysis methods are
constantly being improved, when designing crypto algorithms,
it becomes necessary to create new non-standard approaches
that can effectively resist the existing cryptanalysis methods.
This paper describes in detail a new crypto algorithm created
using an original technique aimed at radically improving
cryptographic strength. The paper provides both brief
theoretical justifications and a complete technical description
of the crypto algorithm.
Keywords: cryptography, VOMF technique, stream
cipher, cryptographic algorithm, special encryption
technique, information security.

I. Introduction

ne of the fundamental principles of cryptography
is that a cryptanalyst's detailed knowledge of a
crypto algorithm should not affect the security of

the cryptosystem in any way. All existing methods of
cryptanalysis are based, one way or another, on a
detailed knowledge of the operation of the crypto
algorithm under study. It follows that if one somehow
limits or reduces the knowledge of the cryptanalyst
about the work of at least some important part of the
algorithm used, then the cryptanalysis of such a crypto
algorithm will turn out to be much more difficult. An
example of such an approach is a periodic change in
the program code of the encryption function of the
crypto algorithm, and such a change should be
unpredictable for the cryptanalyst - in particular, it can
be based on the encryption key. That is, in other words,
the program code of the encryption function of the
algorithm (or several functions) is not unchanged and
initially defined - instead, during execution it is either
replaced by an alternative code from a predetermined
large set of functions, or is formed as the algorithm
works. On this principle, a special technique for
constructing crypto algorithms with increased security is
based [1].

This paper describes in detail the synchronous
streaming crypto algorithm IMPASE (IMProved
Algorithm of Stream Encryption), which is one of the
practical examples of the use of a special technique [1],

which provides for the presence of a variable program
code of the encryption function.

II. Abbreviations and Symbols used

KSA: (Key Scheduling Algorithm) is a preliminary
procedure for preparing data structures and working
variables of the main crypto algorithm based on the
encryption key. It precedes the work of the main crypto
algorithm.

VOMF: (VOlatile Main Function) is a special technique
for designing crypto algorithms, which provides for the
creation of an encryption function (or functions) that
changes according to some rules in a crypto algorithm.

IV: Is the initialization vector. A non-secret value sent
along with the encrypted message for initialization.

+: arithmetic modulo addition. When adding byte
values, the addition is performed modulo 256. When
adding 32-bit words, it is performed, respectively,
modulo 232.

*: arithmetic multiplication modulo 232.

<<<n: cyclic shift of a 32-bit word by n bits to the left.
>>>n: cyclic shift of a 32-bit word by n bits to the right.

<<n: logical shift of a 32-bit word by n bits to the left.
The bits that are pushed into the vacated space are
always 0.

>>n: is a logical shift of a 32-bit word by n bits to the
right. The bits that are pushed into the vacated space
are always 0.

&: is a bitwise AND operation.

OR: is a bitwise OR operation.
XOR: is a bitwise XOR operation.

||: is the operation of concatenation (connection) of 4
separate bytes into one 32-bit word.

< >: is the operation of splitting one 32-bit word into 4
separate bytes.
×: is a generic term for some non-linear operation
performed on two 32-bit words.

w2b(W): (Word-to-Byte) is a function to convert a 32-bit
word W to a byte. The conversion is performed by
adding together all four bytes of the word W modulo
256. The resulting sum of 1 byte is the result of the
function.

O

© 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

33

Y
e
a
r

20
23

Author: “TechnoCrypt” Research Group, Chief of “TechnoCrypt”
Research Group, Karaganda City, Kazakhstan Republic.
e-mails: dvsh68@mail.ru, techno1crypt@gmail.com

All illustrative code fragments in this work are
written in the standard C language. Hexadecimal
numbers are also given in the C format.

III. About the VOMF Technique in the
IMPASE Algorithm

As mentioned above, the use of the VOMF
technique in the crypto algorithm design is carried out in
order to significantly complicate its cryptanalysis. In the
general case, for this, the program code of the crypto
algorithm provides for one or more changing (volatile)
functions that perform data transformation, and which
can replace each other in some pseudo-random way.
Such volatile functions can either be predefined or
created in some way during the execution of the
algorithm. In other words, in addition to the uncertainty
of key data that is unknown to the cryptanalyst, it is also
necessary to increase the degree of uncertainty of the
operations performed on this data. There are many
practical ways to do this, and the IMPASE crypto
algorithm demonstrates just one possible way to use
this technique.

a) Volatile Function
The IMPASE crypto algorithm uses a three-

argument volatile function with a common prototype as
follows:

 (1)

where A, B, and C are 32-bit words, and the sign "×"
denotes some non-linear operation assigned during
execution on 32-bit words. Operations are performed
sequentially from left to right, that is, first the operation is
performed with arguments A and B, and then – the
result of execution with argument C. The order of the
arguments can be any, that is, F(A,B,C), F(B,C,A),
F(C,B,A), etc. Since there are three arguments, the
number of their possible permutations is 3!, that is, 6.
The effective order of the arguments when executing the
algorithm is determined when executing the key
scheduling algorithm (KSA), and is unchanged for the
current combination of encryption key and initialization
vector.

For this function, 8 special composite non-linear
operations have been developed, each of which, as
shown in (1), performs a transformation on two 32-bit
words, and the result of its execution is one 32-bit word.
Before calling the function, 2 operations out of 8
possible are selected in a pseudo-random way. It is
easy to show that the number of options for choosing 2
different elements out of 8 possible (taking into account
the permutations of these 2 elements) is 56, plus 8 more
options in the case of identical elements. Then the total
number of options is 64. Given that the result of the
function depends both on the order of the operands and
on the selected operations, the total number of possible
results is 64 * 6 = 384. That is, in other words, 384

variants of the volatile function are possible. All these
options somehow depend only on the combination of
the encryption key and the initialization vector, and, as
was said, the order of the operands is determined
during the execution of the KSA, and the operations are
selected before the function call, depending on the state
of the internal parameters of the algorithm.

An important detail to note is that all these non-
linear operations are designed so that they have the
same execution time. It is necessary mainly to make run-
time cryptanalysis inefficient. This type of cryptanalysis
is based on the exact measurement of the execution
time of individual sections of the program code of the
crypto algorithm. And although in real practical
conditions this type of cryptanalysis is very difficult,
nevertheless, its possibility must be taken into account.

Creating nonlinear operations with the same
execution time is a rather complicated practical
problem, and in this algorithm it is solved due to the fact
that on most microprocessors, the operations of register
cyclic shift, logical register shift, addition, OR and XOR
operations are performed in the same number of
microprocessor cycles. By combining these operations
in a certain way, it is possible to achieve both a good
degree of nonlinearity of the result and the same
execution time for these composite operations. The
following section provides a detailed description of
these operations.
b) Nonlinear Operations in the Algorithm

The IMPASE crypto algorithm uses 8 non-linear
operations performed in the volatile function described
above. The following description of these operations
assumes that they are performed on operands A and B.
Each operation also uses a 1-byte auxiliary variable t to
store the result of w2b (see Section II), and then
truncates t to the lowest significant 5 bits.

New Encryption Algorithm with Improved Security

 © 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

34

Y
e
a
r

20
23

F (A, B, C) = A × B × C

1. Operation LrotXor (Left Rotate and XOR)
Usage: LrotXor (A,B)
t=w2b(B) & 0x1F;
LrotXor=(A<<<t) XOR (B>>(32-t));
2. Operation LrotAdd (Left Rotate and Addition)
Usage: LrotAdd(A,B)
t=w2b(B) & 0x1F;
LrotAdd=(A<<<t) + (B<<(32-t));
3. Operation LshOr (Left Shift and OR)
Usage: LshOr(A,B)
t=w2b(B) & 0x1F;
LshOr=(A<<t) OR (B>>(32-t));
4. Operation LshAdd (Left Shift and Addition)
Usage: LshAdd(A,B)
t=w2b(B) & 0x1F;
LshAdd=(A<<(32-t)) + (B<<<t);
5. Operation RrotXor (Right Rotate and XOR)
Usage: RrotXor(A,B)
t=w2b(B) & 0x1F;
RrotXor=(A>>>t) XOR (B<<(32-t));

In the IMPASE crypto algorithm, these
operations are numbered from 0 to 7. It should be noted
that when programming the algorithm, it is advisable to
create an array of pointers to functions that perform
these operations, and subsequently call these functions
by the number of the array element.

IV. Description of the IMPASE Algorithm

Strictly speaking, the IMPASE crypto algorithm
is not a separate algorithm - it is a whole family of
algorithms, since by changing a number of its
parameters, you can get many other similar algorithms
with different characteristics. These options are
described in more detail in the next section. The
following is a description of the basic version of the
algorithm.

a) General Characteristics
The IMPASE crypto algorithm is a synchronous

stream encryption algorithm that generates one pseudo-
random 32-bit word in one cycle of its work. This
algorithm is designed primarily for software
implementation, but it can also be used in specialized
controllers. Being a synchronous stream cipher
algorithm, it is actually a generator of a pseudo-random
cryptographic sequence (gamma) with a very large
period. The sequence obtained as a result of its work
can be superimposed on the open data - as a rule,
using the "exclusive OR" operation. Thus, the
cryptographic strength of such a system is entirely
determined by the cryptographic strength of the
generated sequence. The following are its main
characteristics:

− algorithm type: synchronous stream cipher;
− encryption key size: 384 bits;
− initialization vector size: 32 bits;
− required amount of memory for internal data: about

2.5 kilobytes;
− predefined data and constants: not used;
− output data: crypto-resistant pseudo-random

sequence;
− output sequence element: 32-bit word.

Some other properties and features of this
algorithm - such as the period of the output pseudo-
random sequence, its statistical characteristics, the
speed of the algorithm - are described in the next
section.

b) Key Scheduling Algorithm (KSA)
This auxiliary algorithm prepares the internal

data of the crypto algorithm based on the encryption key
and initialization vector. The encryption key, as shown
above, has a size of 384 bits and is considered as a
sequence of 8-bit blocks, i.e. bytes. All operations with
the encryption key, as well as the initialization vector, are
performed at the level of an integer number of bytes.
Thus, the encryption key must be 48 bytes in size. The
initialization vector, respectively, has a size of 4 bytes.

For the operation of the main crypto algorithm,
KSA prepares 4 data blocks, which are called S-block
(Substitution block), P-block (Parameters block), M-
block (Master block) and C-block (Control block). These
blocks have the following structure:

− The S-block is 8 byte arrays of 256 bytes each.
Each of these arrays contains a permutation of
numbers from 0 to 255, thus being a bijection of an
ordered array with values from 0 to 255. The
permutation in each of the 8 arrays is individual and
does not depend on other arrays;

− P-block is a byte array of 259 bytes. During
operation, 4 consecutive bytes are extracted from it,
interpreted as one 32-bit word;

− M-block is an array of 8 32-bit words;
− C-block is a 4-byte byte array.

When KSA is working, the following operations
are strictly sequential:

1. Formation of the C-block. To form a C-block (this is
an array of 4 bytes), the first 4 bytes of the
encryption key are copied into this array.

2. Formation of the M-block and its copy. To form an
M-block (this is an array of 8 32-bit words), the last
32 bytes of the key are copied into this array,
forming 8 32-bit words, since each 32-bit word
occupies 4 bytes. Then a copy of the M-block is
created - the same array of 8 32-bit words, further
referred to as Mcopy in the description. It will take
part in further KSA operations.

3. Creation of a shift register with non-linear feedback.
To form the remaining blocks, a byte shift register
with non-linear feedback is first created, which will
be used as a generator of pseudo-random bytes.
The operation scheme of such a register is shown in
Fig.1. To do this, the first 16 bytes of the key are
copied into a separate 16-byte array Reg, and then
in this array the first 4 bytes are replaced by 4 bytes
of the initialization vector. Further, the array Reg is
used as a shift register with non-linear feedback. To
implement the feedback mechanism, the previously

New Encryption Algorithm with Improved Security

© 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

35

Y
e
a
r

20
23

6. Operation RrotAdd (Right Rotate and Addition)
Usage: RrotAdd(A,B)
t=w2b(B) & 0x1F;
RrotAdd=(A>>>t) XOR (B>>(32-t));

7. Operation RshOr (Right Shift and OR)
Usage: RshOr(A,B)
t=w2b(B) & 0x1F;
RshOr=(A>>t) OR (B<<(32-t));

8. Operation RshAdd (Right Shift and Addition)
Usage: RshAdd(A,B)
t=w2b(B) & 0x1F;
RshAdd=(A>>(32-t)) + (B>>>t);

created Mcopy array of 8 32-bit words is used. A
primitive feedback polynomial of the 16th degree as
follows is also used:

 (2)

In general, the operation of such a register is
almost similar to the operation of classical registers with
linear feedback in the Galois configuration [2], with the
difference that it uses not a bit array, but a byte array, as
well as nonlinear feedback with some features. More
details about the operation of shift registers can also be
found in [3].

It must be said that the creation and properties
of non-linear feedback shift registers is a topic for a
separate article, but here it is only important to note that
the shift register described above generates a

statistically good pseudo-random byte sequence with a
very large period.

Initially, after creating this register, 128 "idle"
generation cycles are performed - this is necessary for
mixing the bits of the key and the initialization vector.
Further, this shift register is used as a generator of
pseudo-random bytes to create the following blocks.

4. Formation of the S-block. To form an S-block, each
of the 8 256 byte arrays is first filled with ordered
values from 0 to 255. Then the array is shuffled
using a pseudo-random sequence obtained from
the shift register described above. The following C
program fragment illustrates this process. The
nextbyte() function is supposed to return the next
pseudo-random byte from the register. You also
need to remember that in C, arrays are numbered
from zero:

typedef unsigned char byte;

int i,j;

byte sblock[8][256];

byte t,n;

for(i=0;i<8;i++)

 for(j=0;j<256;j++) sblock[i][j]=j; //filling from 0 to 255

for(i=0;i<8;i++) {

 n=0;

 for(j=0;j<256;j++) { //mixing

 n+=nextbyte(); t=sblock[i][j];

 sblock[i][j]=sblock[i][n]; sblock[i][n]=t;

 }

 for(j=255;j>=0;j--) {

 n+=nextbyte(); t=sblock[i][j];

 sblock[i][j]=sblock[i][n]; sblock[i][n]=t;
 }

}

As it follows from this example, shuffling is
carried out in two passes - first in the forward direction
and then vice versa. After that, the formation of the S-
block is over - now all 8 arrays are shuffled
independently of each other.

5. Formation of the P-block. To form a P-block, the
corresponding array of 259 bytes is filled with the
next pseudo-random bytes from the register.

6. Determination of operand indexes for volatile
function. This step determines the order of the
operands when the function is called. To do this,
three-byte variables are used as indexes - ix0, ix1

New Encryption Algorithm with Improved Security

 © 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

36

Y
e
a
r

20
23

P(X) = X16 + X5 + X4 + X3 + 1

and ix2. An array of 3 32-bit words Opers, is also
created to store the operands of the volatile
function. Subsequently, these byte variables will be
used in the main cycle of the algorithm as indexes

of the Opers array. To initialize these variables, the
next pseudo-random byte is first generated from the
register, and then the following calculations are
performed:

typedef unsigned char byte;

byte n, ix0, ix1, ix2

n=nextbyte();

ix0=n%3; //ix0 = n mod 3;

if(n>>7) { //if highest bit = 1

 ix1=(ix0+1)%3; ix2=(ix1+1)%3;

 } else { //if highest bit = 0

ix2=(ix0+1)%3; ix1=(ix2+1)%3;

}

As a result, these variables get the values 0, 1,
and 2 in some sequence determined by the pseudo-
random byte. In this way, the order of the operands is
determined. This order is further used in the main cycle
of the algorithm.

c) Main Cycle of the Algorithm
The main cycle of the IMPASE crypto algorithm

consists of two steps. The first step is to extract the next
data from the blocks and calculate an intermediate
value based on them, and this calculation is performed
using a volatile function. The second step is to generate
a 32-bit output value and modify the data blocks. During
the operation of the main cycle, the algorithm actively
uses the operation of concatenation of 4 separate bytes
into a 32-bit word, and the reverse operation - the
separation of a 32-bit word into 4 separate bytes.

1. The first step of the main cycle. The scheme of the
first step is shown in Fig.2. The following actions are
performed:

− 4 consecutive bytes are extracted from the P-block,
starting from the position determined by the first
byte of the C-block, i.e. the first byte of the C-block
is an index to retrieve the bytes from the P-block.
The extracted bytes are concatenated into a 32-bit
word and stored as an element of the Opers[ix2]
array.

− similarly, 4 more consecutive bytes are extracted
from the P-block, starting from the position
determined by the second byte of the C-block. The
extracted bytes are also concatenated into a 32-bit
word and stored in the 32-bit Param1 variable.

− a 32-bit word is extracted from the M-block, while
the three highest bits of the third byte of the C-block

are used as an index. This word is stored as an
element of the Opers[ix1] array.

− A 32-bit word is extracted from the S-block as
follows: the lowest three bits of the third byte of the
C-block are used as the number of the 256-byte
array (from 0 to 7). As an index inside the selected
array, the fourth byte of the C-block is used with the
two lowest bits previously set to zero - this is done
to prevent possible overflow of the array. Starting
from this index, 4 consecutive bytes are extracted
from the array, concatenated into a 32-bit word,
then the resulting word is added modulo 232 to the
Param1 variable, and the result is stored as an
element of the Opers[ix0] array.

− the lowest three bits of the first byte of the C-block
are stored in the variable Op1. This is the number of
the first non-linear operation for a volatile function.

− the lowest three bits of the second byte of the C-
block are stored in the variable Op2. This is the
number of the second non-linear operation for a
volatile function.

− a volatile function of the form (1) is called, while the
three operands of this function are stored as
elements of the Opers array, and the numbers of
non-linear operations are stored in the variables
Op1 and Op2. First, the operation is performed on
the elements Oper[0] and Oper[1], and then on the
result and the element Oper[2]. The final result of
the calculation is one 32-bit word. It is stored in the
Temp variable and used further in the second step
of the main cycle.

2. The second step of the main cycle. The scheme of
the second step is shown in Fig.3. The following
actions are performed:

New Encryption Algorithm with Improved Security

© 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

37

Y
e
a
r

20
23

− separate bytes are extracted from the S-block as
follows. The 32-bit variables Param1 and Temp are
separated by 4 bytes each. The lowest three bits of
each byte of the Param1 variable serve as the
numbers (0..7) of the 4 arrays in the S-block, and
each of the 4 bytes of the Temp variable is an index
(0..255) for extracting a byte from the corresponding
array. For example, if the lowest three bits of each of
the 4 bytes of the Param1 variable are equal to 4,5,0
and 7, and the four bytes of the Temp variable are
equal to 95,144,67 and 201, respectively, then a
byte will be extracted from the 4th S-block array by
index 95, from the 5th array - byte at index 144, from
the 0th array - byte at index 67, and from the 7th
array - byte at index 201. The 4 bytes obtained in
this way are concatenated into a 32-bit value, which
is the output 32-bit word of the algorithm.

− P-block is modified. To do this, those 4 bytes of the
P-block that were used in the first step, and position
of which was determined by the first byte of the C-
block, are interpreted as a 32-bit word. This word is
added modulo 232 to the Temp variable (which
stores the result of evaluating the volatile function).

− M-block is modified. To do this, the element of the
array that was selected at the first step (its index is
determined as the value of the three highest bits of
the third byte of the C-block) is added modulo 232 to
the Param1 variable.

− C-block is modified. To do this, 4 bytes of the C-
block are concatenated into a 32-bit word, which is
added modulo 232 to the array element Opers[ix0]
(this array element, as described above, stores the
32-bit word extracted from the S-block, added to the
Param1 variable).

This completes the main cycle of the algorithm.
To generate the next word, the main cycle of the
algorithm is repeated. From the description of the main
cycle, it can be seen that when generating the output
32-bit word, the algorithm performs a double non-linear
transformation: the first is for non-linear operations of
calculating an intermediate value, which is performed by
a volatile function, and the second is for fetching output
bytes from the S-block, which is actually a non-linear
replacement operation.

B15 B14 B13 … B5 B4 B3 B2 B1 B0 Output

Mcopy[i]=Mcopy[i]*B0
Mcopy[i]=Mcopy[i]+Mcopy[(i+1)%8]
t=w2b(Mcopy[i])
i=(i+1)%8

Start point: i=0

Mcopy, 8 32-bit words

+ + +

t

step1

step1

step2
step3

Figure 1: Scheme of Non-linear Feedback Shift Register

New Encryption Algorithm with Improved Security

 © 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

38

Y
e
a
r

20
23

…

0 1 2 7

C1 C2 C3 C4

S-block

C-block

P-block

3 lowest bits

3 lowest bits
Op1

Op2

3 lowest bits

M-block
3 highest bits

Param1

Opers[3]

32-bit word+

Volatile Function

Temp (32-bit)

Figure 2: Scheme of the First Step of Main Cycle

…

0 1 2 7

C1 C2 C3 C4

S-block

C-block
P-block

M-block

Temp (32-bit) Param1 (32-bit)
<>

3 lowest bits
<>

32-bit word

Output

+

+

Opers[ix0]

||
32-bit word +

<>

Figure 3: Scheme of the Second Step of Main Cycle

V. Properties of the IMPASE Algorithm

a) Statistical Properties of the Generated Sequence
A necessary condition for the operation of any

stream crypto algorithm is, in addition to cryptographic
strength, good statistical characteristics of the
generated pseudo-random sequence. For the IMPASE
algorithm, the statistical analysis of the generated

sequence was performed in accordance with the
recommended set of statistical tests for pseudorandom
sequences [4]. For testing, 16384 32-bit words were
generated, which in total is 64 kilobytes.

It should be noted that, as in most crypto
algorithms, in IMPASE changing at least one bit of the
encryption key or initialization vector leads to a complete

New Encryption Algorithm with Improved Security

© 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

Vo
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

39

Y
e
a
r

20
23

change in the entire generated sequence, since (as
described above) leads to a complete change in the
results of the shift register and, accordingly, to a
complete change in at least the S-block and P-block.
Therefore, statistical tests were carried out for 50
different, completely random, encryption keys and
initialization vectors. In all cases, very good test results
were obtained.

b) Crypto Algorithm Performance
The pseudo-random sequence generation

speed was evaluated on an Intel Core i3 processor with
a clock frequency of 3.0 Mhz, on the core of the MS-
DOS operating system. This operating system was
chosen due to the fact that, due to the absence of third-
party processes, the maximum performance of iterative
algorithms is achieved on it (unlike Windows and Linux
OS). In addition, the MS-DOS kernel is often used in
specialized controllers. To evaluate the performance, the
algorithm was implemented in the C language, and the
Watcom C v9.5a optimizing compiler was used to
compile the program. All possible optimizations were
made, both at the level of the program code and in the
compiler settings. For comparison, we measured the
performance of the RC4 algorithms, as well as AES (10
rounds, OFB mode) under the same conditions. The
RC4 algorithm was chosen for comparison because it is
one of the fastest stream crypto algorithms, and the AES
algorithm because it is the current standard. The
IMPASE algorithm had a generation rate of 940 Mbps,
while the RC4 algorithm had 2200 Mbps, and the AES
algorithm had 180 Mbps. It can be assumed that when
the algorithm is implemented in the Assembler
language, the performance can be significantly
improved.

c) Possible Algorithm Modifications
As noted above, the IMPASE algorithm is

actually a whole family of algorithms. By changing a
number of its parameters, one can obtain crypto
algorithms with other properties. The following are the
parameters that can significantly affect the properties of
the generated sequence:

− the number of arrays in the S-block. Increasing the
number of arrays will lead to even more
cryptographic strength, but will require more
memory to work with, and increase the KSA running
time. In the described basic version, the S-block
contains 8 arrays and, according to our estimates,
this is the minimum required number.

− increasing in the number of non-linear operations for
a volatile function. Such an increase will also
increase cryptographic strength, since it will lead to
an increase in the number of options for a volatile
function. However, it must be remembered that the
operations must have a high degree of non-linearity,

and also have the same execution time - this is the
most difficult condition.

− increasing the number of operands in a non-
constant function. Such an increase will also
increase cryptographic strength, however, it will lead
to an increase in the generation time of the output
value and, accordingly, to an increase in the
generation time of the entire sequence.

− changing the way data blocks are generated.
Instead of the existing non-linear feedback shift
register, a simpler and faster way to populate and
shuffle algorithm data blocks can be designed. This
may lead to a simplification of the KSA. However, it
must be remembered that the algorithm for
preparing data blocks should not contain easily
traceable linear dependencies - this can lead to a
noticeable drop in the cryptographic strength of the
entire algorithm.

VI. Conclusion

This paper describes in detail a method for
creating cryptographic algorithms with increased
cryptographic strength based on the VOMF technique,
and also describes in detail the IMPASE stream crypto
algorithm created using this technique, and which is a
practical example of its use. It should be noted that the
implementation of this technique in the IMPASE
algorithm is very simple and intuitive. However, this is
only one of the possible ways to apply the VOMF
technique - there are many other, more complex ways.
In addition, a similar approach can be very successfully
implemented also in the design of block crypto
algorithms - at present, we are completing tests of a
block crypto algorithm built using the same technique.

We hope that this work will be useful for
understanding the aspects of improving cryptographic
strength in the design and analysis of cryptographic
algorithms.

New Encryption Algorithm with Improved Security

 © 2023 Global Journ als

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V o
lu
m
e

X
xX
II
I
Is
su

e
I
V
 er
si
on

 I

(

)
J

40

Y
e
a
r

20
23

References Références Referencias

1. https://web.archive.org/web/20180411172542id_/htt
ps://www.fruct.org/publications/abstract20/files/Sha.
pdf.

2. https://en.wikipedia.org/wiki/Linear-feedback_shift_
register.

3. B. Schneier, Applied cryptography. Second edition.
John Wiley & Sons. 1996.

4. Donald E. Knuth, The Art of Computer Programming.
Vol. 2: Seminumerical Algorithms (3rd ed.).
Addison-Wesley Professional. ISBN 978-0-201-896
84-8.

	New Encryption Algorithm with Improved Security
	Author
	Keywords
	I. Introduction
	II. Abbreviations and Symbols used
	III. About the VOMF Technique in the IMPASE Algorithm
	a) Volatile Function
	b) Nonlinear Operations in the Algorithm

	IV. Description of the IMPASE Algorithm
	a) General Characteristics
	b) Key Scheduling Algorithm (KSA)
	c) Main Cycle of the Algorithm

	V. Properties of the IMPASE Algorithm
	a) Statistical Properties of the Generated Sequence
	b) Crypto Algorithm Performance
	c) Possible Algorithm Modifications

	VI. Conclusion
	References Références Referencias

