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Abstract- In gear power transmission systems, the lubricant helps reduce friction, wear of parts in 
contact, cooling of surfaces, reduction of operating noise, protection of components against 
corrosion, etc. In spite of that, the lubricant entrapment in the gears inter-tooth space generates 
substantial energy losses at very high rotational speeds. The best optimization of these energy 
losses requires the preliminary knowledge of the behavior of leakage surfaces of trapped 
lubricant during the gears rotation. The aim of this work is to develop a purely analytical model 
enabling to calculate the exact values of the axial and radial leakage surfaces of the lubricant in 
the inter-tooth space of external spur gears as well as the volumes of the pockets. From the 
modeling of the tooth profile and the parametric equations relating to external spur gears, we 
have developed a purely analytical model of the lubricant leakage surfaces in the inter-tooth 
space as a function of the angle of rotation.   
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Establishment of an Analytical Model for 
Determining Leakage Surfaces in an External 

Tooth Spur Gear
Choupo Wankam Gervé α & Tchotang Théodore σ

Abstract- In gear power transmission systems, the lubricant helps reduce friction, wear of parts in contact, cooling of surfaces, 
reduction of operating noise, protection of components against corrosion, etc. In spite of that, the lubricant entrapment in the 
gears inter-tooth space generates substantial energy losses at very high rotational speeds. The best optimization of these energy 
losses requires the preliminary knowledge of the behavior of leakage surfaces of trapped lubricant during the gears rotation. The 
aim of this work is to develop a purely analytical model enabling to calculate the exact values of the axial and radial leakage 
surfaces of the lubricant in the inter-tooth space of external spur gears as well as the volumes of the pockets. From the modeling 
of the tooth profile and the parametric equations relating to external spur gears, we have developed a purely analytical model of 
the lubricant leakage surfaces in the inter-tooth space as a function of the angle of rotation. Validation of the model was carried 
out via a comparative study between our results and those resulting from the work of Abdelilah LASRI and al and Diab Y. and al. 
Curves from our model and those of the reference articles merge after superposition and the relative differences are less than   
10-2. This work is therefore the first step in the calculation of the power lost by the lubricant trapping in the gears inter-tooth. It will 
be of great importance in minimizing power losses. 
Keywords: gear, power transmission, energy losses, trapping, leakage surfaces, pocket volumes, inter-tooth. 

I. Introduction 

ue to their compactness and their ability to transmit high loads at high speeds, gears are widely used in 
automotive and aerospace applications through speed reducers, power transmissions in wind turbines, etc. 
In gear drives energy efficiency improving may require reducing power losses. Power losses in gears 

(gearboxes, reducers, etc.) can be grouped into two categories: power losses depending on the transmitted load 
(friction at the contact areas between the teeth and friction in the bearings, etc.) and those independent of the 
transmitted load (losses due to the trapping of the lubricant, the ventilation of the mobiles, etc.). Several researchers 
have been interested in load-dependent losses and enough models exist. The oil trapping in the inter-tooth space 
and the ventilation of the spindles are the two main sources of power dissipation in the case of losses independent 
of the loads. Very few studies and models exist on the loss of power by lubricant trapping and by consequent on the 
modeling of lubricant leakage surfaces. The vast majority of studies concerning the modeling of lubricant trapping in 
the inter-tooth space are empirical, numerical, and semi-analytical and based on approximations and estimations. 

 
 

Using NASA research center test rig, Anderson and al. [2], Krantz [3], Rohn and Handschuh [4] have 
developed several empirical formulas. Empirical formulations for the particular case of trapping losses in gears are 
based on the gears geometric parameters and include those of Terekhov [5], Wolfan Mauz [6], Butsch M. [7] and 
Maurer J. [8]. The empirical models developed provided global formulas for the estimation of pressing torque or 
power loss. It is necessary to point out that these formulas are only valid for external gearing and remain linked to 
the sensitivity and precision of the equipment used for the tests. Generally they are of very low precision with quite 
important deviations. As an example we can quote the model of Mauz[6], which indicates an uncertainty between 5 
and 15% if the resisting torque is higher than 5 Nm and an uncertainty up to 50% for lower torque values. It is 
therefore necessary to set up another quite precise model. Many researchers have developed numerical models to 
understand the behavior of inter-tooth spaces during movement in order to estimate the power lost by trapping. 
Pechersky and Wittbrodt [9] used an approximation of the tooth profile expression to calculate the leakage surfaces. 
Diab Y. and al [10-11] have numerically evaluated the radial leakage surfaces (considered here as minimum 
distances between the tip corner of  the  gear  and  the  profile)  and  they  obtained  the  axial  leakage  surfaces  by 
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The first experimental studies on this subject permitted to make a difference between load-depending and 
load-independing losses. Devin R. and Hilty B.[1], made experimental investigations of load-independent losses 
caused by planetary gear sets and conclude that for high speeds (≥ 6000 r pm) the losses independent of the load 
become the major contributor. These experimental works allowed to develop and validate empirical, numerical and 
semi-analytical models.



numerical integration. Abdelilah Lasri and al [12-14] used a numerical approximation to evaluate the radial surfaces 
(considered here as the minimum distance between the tooth profiles) and they obtained the axial leakage surfaces 
by numerical integration. David C. Talbot [15] calculates the power lost by trapping in planetary gears by discretizing 
in time and space the Conservation of Mass, Momentum and Energy equations. The leakage surfaces are obtained 
by numerical approximation through the surfaces meshing. Seetharaman and Kahraman [16] were inspired by the 
work of Pechersky and Wittbrodt [9] to establish a semi-analytical formulation for calculating leakage surfaces. 
However, several approximations are made there, namely a Taylor approximation of order 1 of the involute 
profileequation, the cancellation of certain portions of the surface, the use of approximate values of certain 
distances, etc. From the vectors ray approach, Massimo Rundo[17] established an analytical formula for trapped 
volume in crescent pumps. It is necessary to note that in this approach the length variation of the vector ray for an 
infinitesimal rotation is neglected. In addition, this formula is limited only to the portion where teeth profiles are in 
contact. For an efficient contribution to the power losses by the lubricant trapping of as well as the wear of the 
elements with a view to improve the energy performances in gears transmissions, it is essential to completely lift the 
veil on the inter-tooth zone during meshing. From the work of Seetharaman and Kahraman [16], we will establish a 
purely analytical model of the evolution of the radial and axial leakage surfaces as a function of the angle of rotation 
in a spur gear. This work has as particularity the use of the exact expression of the tooth profile in the calculations 
and the authenticity of the analytical expressions of the developed surfaces. 

This work is divided into three main parts. The first part is devoted to the modeling of the tooth profile and 
the associated parametric equations. The second part deals with the calculations of the leakage surfaces from the 
tooth profile equations, with the radial leakage surface being considered as the minimum distance between the tooth 
profiles. The last part focuses on the results interpretation and the model validation. The model validation consist of 
a superposition of our results with those of A. Lasri and al [13] and Diab and al [10]. 

II. Material 

a) Trapping Phenomenon 
The lubricant used in gear transmissions to reduce corrosion, friction, cool the elements, etc., is trapped in 

the inter-tooth space during movement and becomes the seat of energy losses. Lubricant trapping is the jamming of 
the lubricant in the inter-tooth space during the meshing phase. The fraction of lubricant trapped in the inter-tooth 
space (in yellow in figure 1) is expelled under pressure radially toward the neighbouring pockets and or axially 
toward the outside of the gear during this phenomenon. The opposite phenomenon is reproduced during the 
unmeshing phase. 

The geometry of the inter-tooth space relates to the type of tooth (straight, helical, hypoid, etc.) which 
constitutes the gear’s wheels. In the particular case of spur gears, the axial leakage area remains constant over the 
tooth width. However, in the case of helical gear, the axial leakage area is variable over the tooth width. 

 
Figure 1: Inter-tooth space and trapped lubricant 

b) Evolution of Radial and Axial Leakage Surfaces 
The radial and axial leakage surfaces vary according to the angle of rotation. The further away from the initial 

position, the surfaces increase. Here, the initial position is the meeting point between the two pitch circles. The 
Figure 2 below illustrates the behavior of the leakage surfaces as a function of the angle of rotation from a) to h). 

pinion 
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Figure 2:

 

Evolution of the leakage surfaces as a function of the rotation angle

c)

 

Coordinate System

 

Linked

 

to Gears

 

The pinion (driver) is associated to a fixed reference �𝑂𝑂𝑓𝑓 ,𝑥𝑥𝑓𝑓 ,𝑦𝑦𝑓𝑓 ,𝑧𝑧𝑓𝑓�

 

and mobile reference (𝑂𝑂1 ,𝑥𝑥1,𝑦𝑦1,𝑧𝑧1), 
which revolves around (𝑂𝑂𝑓𝑓 , 𝑧𝑧𝑓𝑓) by an angle 𝜙𝜙1 . Similarly, the gear

 

(driven) is associated to fixed reference 
(𝑂𝑂𝑝𝑝 , 𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝 , 𝑧𝑧𝑝𝑝)

 

and mobile reference

 

(𝑂𝑂2 ,𝑥𝑥2,𝑦𝑦2,𝑧𝑧2) , which revolves around (𝑂𝑂𝑝𝑝 , 𝑧𝑧𝑝𝑝)

 

by an angle 𝜙𝜙2 . Such as 
𝜙𝜙2=−(𝜌𝜌1/𝜌𝜌2)

 

𝜙𝜙1=−(𝑟𝑟1/𝑟𝑟2)

 

𝜙𝜙1=−(𝑟𝑟𝑠𝑠1/𝑟𝑟𝑠𝑠2)

 

𝜙𝜙1 . Figure 3 below illustrates all these different references.

 

a) Location 𝜙𝜙1=0,4287 rad e) Location𝜙𝜙1=-𝛽𝛽1=-0,0713 rad

b) Location𝜙𝜙1=0,3558 rad f) Location𝜙𝜙1=-1493 rad

c) Location𝜙𝜙1=0,2392 rad g) Location𝜙𝜙1=-0,3658 rad

d) Location𝜙𝜙1=0 rad h) Location 𝜙𝜙1= -0,4458 rad
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Figure 3: Tracking of gear system 

In our calculations, the initial position is the position where the tooth profiles of the driving and driven gears 
meet at point I (the contact point between the pitch circles). 

d) Geometry of a Spur Gear Tooth 
The tooth shapes of spur gears are relative to the number of teeth. Generally, for a tooth, there will be the 

involute zone and the circular zone. Figure 4 below shows the detailed geometry of a 25-tooth gear. 

 

Figure 4: Geometry of an external spur gear 

e) Leakage Surface and Border Points at a given Location 
In a specific interval of the rotation angle, the profiles of the teeth meet, and consequently the radial leakage 

surfaces remain zero. Figure 5 below is a particular case. On this figure, C1 and C2 are the two contact points of the 
tooth profiles. 

Gear pitch circles 1&2
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Figure 5: Leakage surface at a location where profiles are in contact 

When the profiles are not in contact, the radial leakage surfaces are non-zero and, consequently the axial 
leakage surface has as its boundary the tooth profiles and the minimum distances between the adjacent profiles. 
The figure 6 below is an illustration of this situation. 
 

 

Figure 6: Radial and axial leakage Surfaces at a location where profiles are not in contact 

f) Information Technology Tools 
The simulation of the equations and the model obtained was carried out with the MATLAB R2016A 

application installed in an HP computer, AMD A6-3400 APU HD Graphics 1.40 GHz; 6 GB of RAM. 
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III. Method

a) Hypothesis
Our study was carried out under the following assumptions:

- The portion of tooth between the addendum circle and the base circle is in involute.
- The shape of the tooth portion after the base circle varies depending on the tooth number.
- Radial distances are minimum distances between adjacent profiles.
- The direction of rotation of positive angles is the trigonometric direction and, the direction of rotation of negative 

angles is the anti-trigonometric direction.
- In our calculations, the initial position (𝜙𝜙𝑖𝑖 =0) is the position where the two adjacent profiles meet at the 

common point of the pitch circles. However, for the presentation and the comparative study of the results, we 
bring the initial position back to the position where (O1O2) passes simultaneously through the midpoints of the 
gear top land and the pinion root.

b) Calculation Algorithm
From the geometric parameters of a gear tooth, the parametric equations of the half tooth profile are 

established. The complete gear tooth is obtained by axial symmetry of this half tooth, followed by N-1 successive 
rotations of the primary tooth with respect to the axis of the gear and respective angles 2*𝜋𝜋*k/N, 1≤k≤N-1. Where N 
is the number of teeth.

From the initial position, the coordinates of the boundary points of the leakage surfaces are calculated as a 
function of the rotation angle. From the properties of the involute of a circle, we calculate the radial distances as a 
function of the rotation angle and by surface integration, we obtain the radial surfaces. The figure 7 below is the 
algorithm that succinctly presents our working methodology.

Figure 7: A calculation algorithm
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c) Half Tooth Modeling
This modeling is carried out based on of the tooth profile shown in Figure 4.

1) Tooth tip equation
The tooth tip is a fraction of the tip circle (see figure 4). By applying the parametric equation of a circle with 

radius 𝑟𝑟𝑎𝑎 (tip radius) centered in the point 𝑂𝑂1 , the parametric equation of the half of the geartooth tip is given in the 
coordinate system (o, x, y) by the relation (1) below:

With 𝑞𝑞𝑚𝑚𝑖𝑖𝑚𝑚 ≤ q ≤ 𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 , 𝑞𝑞𝑚𝑚𝑖𝑖𝑚𝑚 = mes (𝑖𝑖, 𝑂𝑂𝑂𝑂�����⃗ ) and 𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 =𝜋𝜋
2

2) Equations of the involute portion (AB)
By applying the properties of the involute of the circle, the parametric equations of the portion (AB) in the 

fixed frame (O,x,y) are given by the relation (2) below:

with 0≤ 𝜃𝜃 ≤ [𝑟𝑟𝑎𝑎
2

𝑟𝑟𝑏𝑏
2 − 1]1/2

3) Equations of the portion between the base circle and the root circle
On the figure 6, 

0≤ 𝜁𝜁 ≤ 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 (3)

with 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 = 𝜋𝜋
𝑁𝑁

- Ω𝑠𝑠. 

By application of the geometric construction properties (see[20]) 𝜁𝜁=arccos(2rb*rp/(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2)).
In the cas of gears with pressure angle 𝛼𝛼 = 20°, when 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 ≤ arccos(2rb*rp/ (𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2) ) then we 

take 𝜁𝜁=k*((𝜋𝜋/N)-Ω𝑠𝑠); 0<k≤ 1.
In summary, in the portion between the base circle and the root circle 03 possible profiles shapes emerge 

depending on the number of teeth:
- If 𝑟𝑟𝑏𝑏 ≤ 𝑟𝑟𝑝𝑝 : The circular portion does not exist. Our tooth will consist only of the involute part and the tooth top.
- If 𝑟𝑟𝑏𝑏 > 𝑟𝑟𝑝𝑝 : Two possibilities emerge.

• If arccos(2𝑟𝑟𝑏𝑏*𝑟𝑟𝑝𝑝 /(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2))≤ 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 : In this case, this portion will consist of two (02) types of profiles, namely the 
arc of a circle BD followed by the root circle.

• If 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 <arccos(2𝑟𝑟𝑏𝑏*𝑟𝑟𝑝𝑝 /(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2)): In this case, this portion is broken down into segment [BC] and arc of circle 
CD followed by the part of the root circle.

i. Case where arccos(2rb*rp /(rb
2 + rp

2))≤ ζmax

Equation of segment [BC] in (o, x, y)
As a reminder, segment [BC] only exists when N<25 teeth. This segment equation requires knowledge of 

the coordinates of points B and C.
According to figure 5, the coordinates of point B are given by the relation (4) below:

With Ω𝑠𝑠= inv(𝛼𝛼0) + 𝛽𝛽1 and 𝜉𝜉=k*((𝜋𝜋/N)-Ω𝑠𝑠); 0<k≤ 1
𝛽𝛽𝑖𝑖 is the angle between axis (𝑂𝑂1𝑂𝑂2)  and (𝑂𝑂𝑖𝑖 , 𝑦𝑦𝑖𝑖) with axis (𝑂𝑂𝑖𝑖 , 𝑦𝑦𝑖𝑖) dividing the tooth of gear i in two equal parts.

𝛽𝛽𝑖𝑖=
𝑡𝑡𝑠𝑠𝑖𝑖
2𝑟𝑟𝑖𝑖

with 𝑡𝑡𝑠𝑠𝑖𝑖 =𝜋𝜋𝑚𝑚
2

+ 2*e*tan(𝛼𝛼). 𝑡𝑡𝑠𝑠𝑖𝑖 : tooth thickness at the standard pitch circle,

𝛼𝛼: pressure angle, m: module, e: profile shift, -0.5≤e/m≤ 1.

The coordinates of point D are given by relation (5) below:

�𝑥𝑥(q) = 𝑟𝑟𝑎𝑎 ∗ sin(q)
𝑦𝑦(q) = 𝑟𝑟𝑎𝑎 ∗ cos(q)

�           (1) 

�𝑥𝑥
(𝜃𝜃) = −𝑟𝑟𝑏𝑏 (sin(𝜃𝜃) − 𝜃𝜃 cos(𝜃𝜃))
𝑦𝑦(𝜃𝜃) = 𝑟𝑟𝑏𝑏 (cos(𝜃𝜃) + 𝑟𝑟𝑏𝑏𝜃𝜃 sin(𝜃𝜃))

�      (2)

�xB = rbsin(Ω𝑠𝑠)
yB = rbcos(Ω𝑠𝑠)

�          (4)

�xD = rp ∗ sin(Ω𝑠𝑠 + 𝜁𝜁)
yD = rp ∗ cos(Ω𝑠𝑠 + 𝜁𝜁)

�            (5)
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Let K be the contact point between the tangent to𝐶𝐶𝐶𝐶� in D and the tangent to the involute in B. Then the 
coordinates of K are given by relation (6) below:

Let's posed1=sqrt(((xD-xk)^2)+((yD-yk)^2)) and d2=sqrt((xk)^2 +(yk)^2).
The coordinates of point C are given by relation (7) below:

The following relation (8) is the parametric equation of the segment [BC] in (o, x, y):

With xC ≤d ≤ xB et    a=yB/xB = yC/xC;

The following relation (9) gives us the coordinates of the center of curvature E of the arc𝐶𝐶𝐶𝐶� :

With rc1=d1*tan((pi/4)+(𝜁𝜁/2)). rc1 is the radius of curvature of the arc𝐶𝐶𝐶𝐶�

Equation of arc 𝐶𝐶𝐶𝐶� in the reference (o, x, y)
The Equation of the arc 𝐶𝐶𝐶𝐶� in the reference (o, x, y) is given by the relation (10) below:

With 𝑞𝑞𝑚𝑚𝑖𝑖𝑚𝑚 ≤ q ≤ 𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 , 𝑞𝑞𝑚𝑚𝑖𝑖𝑚𝑚 = mes (𝑖𝑖, 𝐸𝐸𝐶𝐶�����⃗ ) and 𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 = mes (𝑖𝑖, 𝐸𝐸𝐶𝐶�����⃗ )

Equation of the circular portion between D and the tip circle in (o, x, y)
This portion is a fraction of the root circle. Its equation is given by relation (11) below:

with qmin ≤ q ≤qmax; qmin = 𝜋𝜋
2

- 𝜋𝜋
𝑁𝑁

and qmax= mes (𝑖𝑖, 𝑂𝑂𝐶𝐶������⃗ )

ii. Case where arccos(2rb*rp/(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2))≤ 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 : the segment [BC] does not exist

In this case, the center of curvature is given by the relation (12) below:

Where 𝜁𝜁=arccos(2rb*rp/(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2))

The equation of the arc 𝐶𝐶𝐶𝐶� in the reference (o, x, y) is given by the relation (10) below, with the curvature 
radius rc1 = ED=EB.

d) Gear Generating
For the generation of a complete gear wheel, the following methodology has been adopted:

- Codification on Matlab of the equations developed above (half of a tooth).
- Application of symmetry with respect to (O, 𝑗𝑗) to get a whole tooth.
- Generating of N-1 others teeth by N-1 successive rotations of the initial tooth of respective angles (2*𝜋𝜋/N)*i, with 

1≤ i ≤N-1.

e) Calculation of Radial and Axial Leakage Surfaces

i. Calculation of the border points coordinates at a given position (see figures 5 and 6).
At a rotation angle 𝜙𝜙𝑖𝑖 around 𝑂𝑂𝑖𝑖 with respect to the initial position, the coordinates of points A1, A1’, E1, E1’, 

B1, and B1’ (see figures 5 and 6) in (𝑂𝑂𝑓𝑓 ,𝑥𝑥𝑓𝑓,𝑦𝑦𝑓𝑓) are given by equations below:

�xK = (rp ∗ tan(Ω𝑠𝑠))/(cos(Ω𝑠𝑠 + 𝜁𝜁) + (sin(Ω𝑠𝑠 + 𝜁𝜁)) ∗ tan(Ω𝑠𝑠))
yk = xk/tan(Ω𝑠𝑠)

�     (6)

�xC = (d1 + d2) ∗ sin(Ω𝑠𝑠)
yC = (d1 + d2) ∗ cos(Ω𝑠𝑠)

�     (7)

� x = d
y = a ∗ d

�                   (8) 

�xE = (rp + rc1) ∗ sin(Ω𝑠𝑠 + 𝜁𝜁)
yE = (rp + rc1) ∗ cos(Ω𝑠𝑠 + 𝜁𝜁)

�         (9)

�x(q) = xE + rc1 ∗ sin(q)
y(q) = yE + rc1 ∗ cos(q)

�               (10) 

�x(q) =  rp ∗ sin(q)
y(q) =  rp ∗ cos(q)

�           (11) 

�xE = rb ∗ tan(Ω𝑠𝑠 + 𝜁𝜁)/(cos((Ω𝑠𝑠) + sin(Ω𝑠𝑠) ∗ tan(Ω𝑠𝑠 + 𝜁𝜁))
yE = 𝑟𝑟𝑏𝑏/(cos((Ω𝑠𝑠) + sin(Ω𝑠𝑠) ∗ tan(Ω𝑠𝑠 + 𝜁𝜁))

�     (12)



   

 
 

 

 
 

 
  

 
 

 
 

 
 

 

  

  

   
  

    

 
 

   

  
   

 
     

  

  

  

  

     

  

  
 

   

  

  

Establishment of an Analytical Model for Determining Leakage Surfaces in an External Tooth Spur Gear
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The coordinates of the tooth tip corner of gear in (𝑂𝑂𝑓𝑓 , 𝑥𝑥𝑓𝑓, 𝑦𝑦𝑓𝑓) are given by relations (14) and (15) below:

  
� 𝑥𝑥𝑂𝑂1 = ra2 ∗ sin(inv(𝜙𝜙𝑟𝑟𝑎𝑎2 )− inv(𝛼𝛼0) + 𝜙𝜙2 )
𝑦𝑦𝑂𝑂1 = E − ra2 ∗ cos(inv(𝜙𝜙𝑟𝑟𝑎𝑎2 )− inv(𝛼𝛼0) + 𝜙𝜙2 )

�   (13)

  

  

  
      

  

   
  

  

  

   

  

with 𝜙𝜙𝑟𝑟𝑎𝑎𝑖𝑖 = arccos(rbi/rai), i=1,2 and inv(𝛼𝛼0) =tan(𝛼𝛼0) - 𝛼𝛼0

With𝜙𝜙𝑟𝑟𝑎𝑎𝑖𝑖=arccos(rbi/rai), i=1,2

Equations (16) and (17) below are the coordinates of the pinion tooth tip corner in (𝑂𝑂𝑓𝑓 , 𝑥𝑥𝑓𝑓, 𝑦𝑦𝑓𝑓)

𝜃𝜃𝑟𝑟𝑎𝑎𝑖𝑖=𝛽𝛽𝑖𝑖+ inv(𝛼𝛼0)- inv(𝜙𝜙𝑟𝑟𝑎𝑎𝑖𝑖 ), i=1,2

𝜃𝜃𝑟𝑟𝑎𝑎𝑖𝑖=𝛽𝛽𝑖𝑖+ inv(𝛼𝛼0)- inv(𝜙𝜙𝑟𝑟𝑎𝑎𝑖𝑖 ), i=1,2

The coordinates of B′1 and B2 in (Of, xf, yf) are given by relations (18) and (19) below:

When 𝑟𝑟𝑏𝑏 ≤ 𝑟𝑟𝑝𝑝 , the Coordinates of the contact points between the tooth profile and the root circle are given 
by the equation (19) below:

With ay=Arccos(rb1/rp1);

Coordinates of contacts points (𝐶𝐶1 𝑎𝑎𝑚𝑚𝑎𝑎 𝐶𝐶2 of the pinion and gear (see figure 5).

Existence condition of 𝐶𝐶1 and 𝐶𝐶2
𝐶𝐶1 exists if and only if:

In this case, the radial surface 1 is zero: Sr1 = 0
𝐶𝐶2 exists if and only if:

In this case, the radial distance 2 is zero: Sr2 = 0.
At the initial condition, C1 is confused with I.

By applying the line of contact between the two conjugate surfaces, we obtain the coordinates of points 
𝐶𝐶𝑖𝑖 rotation angleϕi around Oi with respect to the initial position in (𝑂𝑂𝑓𝑓 , 𝑥𝑥𝑓𝑓, 𝑦𝑦𝑓𝑓 ):

Then the coordinates of 𝐶𝐶1 in (𝑂𝑂𝑓𝑓 , 𝑥𝑥𝑓𝑓 , 𝑦𝑦𝑓𝑓) are given by the relation (22) below:

with 𝜃𝜃𝐶𝐶1=tan(𝛼𝛼0)-𝜙𝜙1;

� 𝑥𝑥𝑂𝑂1′ = ra2 ∗ sin(−inv(𝜙𝜙𝑟𝑟𝑎𝑎2 ) + inv(𝛼𝛼0) + 2 ∗ 𝛽𝛽2 + 𝜙𝜙2)
𝑦𝑦𝑂𝑂1′ = E − ra2 ∗ cos(−inv(𝜙𝜙𝑟𝑟𝑎𝑎2 ) + inv(𝛼𝛼0) + 2 ∗ 𝛽𝛽2 + 𝜙𝜙2 )

�      (14)

�𝑥𝑥𝐸𝐸1 = ra1 ∗ sin(−inv(𝜙𝜙𝑟𝑟𝑎𝑎1 ) + inv(𝛼𝛼0)− 2𝜃𝜃𝑟𝑟𝑎𝑎1 − 𝜙𝜙1 )
𝑦𝑦𝐸𝐸1 = ra1 ∗ cos(−inv(𝜙𝜙𝑟𝑟𝑎𝑎1 ) + inv(𝛼𝛼0)− 2𝜃𝜃𝑟𝑟𝑎𝑎1 − 𝜙𝜙1 )

�     (15)

�𝑥𝑥𝐸𝐸1′ = ra1 ∗ sin(−inv(𝜙𝜙𝑟𝑟𝑎𝑎1 ) + inv(𝛼𝛼0)−𝜙𝜙1)
𝑦𝑦𝐸𝐸1′ = ra1 ∗ sin(−inv(𝜙𝜙𝑟𝑟𝑎𝑎1 ) + inv(𝛼𝛼0)− 𝜙𝜙1 )

�     (16)

(17)�𝑥𝑥𝐵𝐵′1 = rb1 ∗ sin(Ω𝑠𝑠 + 𝛽𝛽1 + 𝜙𝜙1 )
𝑦𝑦𝐵𝐵′1 = rb1 ∗ cos(Ω𝑠𝑠 + 𝛽𝛽1 + 𝜙𝜙1)

�       

(18)� 𝑥𝑥𝐵𝐵2 = rb2 ∗ sin(−𝑖𝑖𝑚𝑚𝑖𝑖(𝛼𝛼0) + π− 2𝛽𝛽2 −𝜙𝜙2 )
𝑦𝑦𝐵𝐵2 = E + rb2 ∗ cos(−𝑖𝑖𝑚𝑚𝑖𝑖(𝛼𝛼0) + π− 2𝛽𝛽2 − 𝜙𝜙2 )

�

�𝑥𝑥𝑝𝑝1 = rp1 ∗ sin(Ω𝑠𝑠 − tan(ay) + ay− 𝛽𝛽1 − 𝜙𝜙1 ) 
𝑦𝑦𝑝𝑝1 = rp1 ∗ cos(Ω𝑠𝑠 − tan(ay) + ay− 𝛽𝛽1 − 𝜙𝜙1 )

�    (19)

tan(𝛼𝛼0)-�(𝑟𝑟𝑎𝑎1
𝑟𝑟𝑏𝑏1

)2 − 1 ≤ 𝜙𝜙1 ≤ -𝑟𝑟𝑠𝑠2
𝑟𝑟𝑠𝑠1

(tan(𝛼𝛼0)-�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 )            (20)

(−𝑟𝑟𝑠𝑠2
𝑟𝑟𝑠𝑠1

)(−tan(𝛼𝛼0)− 2𝛽𝛽2+�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 ) ≤ 𝜙𝜙1 ≤ −tan(𝛼𝛼0) + 2𝛽𝛽1+�(𝑟𝑟𝑎𝑎1
𝑟𝑟𝑏𝑏1

)2 − 1          (21)

⎩
⎨

⎧𝑥𝑥𝐶𝐶1 = rb1 ∗ (�1 + 𝜃𝜃𝐶𝐶1
2) sin(Arctan(𝜃𝜃𝐶𝐶1)− 𝜃𝜃𝐶𝐶1 + inv(𝛼𝛼0)− 𝜙𝜙1 )

𝑦𝑦𝐶𝐶1 = rb1 ∗ (�1 + 𝜃𝜃𝐶𝐶1
2) cos(Arctan(𝜃𝜃𝐶𝐶1)− 𝜃𝜃𝐶𝐶1 + inv(𝛼𝛼0) −𝜙𝜙1) 

�     (22)



  

  

  

   

  

  
  

   

     

  

 

       
  

      
       
      
         

 

 

     

    

 

      

 

   

  

  

   

  

        

 

 

   

The coordinates of 𝐶𝐶2 in (𝑂𝑂𝑓𝑓 , 𝑥𝑥𝑓𝑓, 𝑦𝑦𝑓𝑓) are given by the relation (23) below:

with 𝜃𝜃𝐶𝐶2=tan(𝛼𝛼0)- 2𝛽𝛽1+𝜙𝜙1;

In (𝑂𝑂𝑝𝑝 , 𝑥𝑥𝑝𝑝 , 𝑦𝑦𝑝𝑝), the coordinates of 𝐶𝐶1 are given by the relation (24) below:

with 𝜃𝜃′𝐶𝐶1=tan(𝛼𝛼0)-𝜙𝜙2;

In (Op, xp, yp), the coordinates of 𝐶𝐶2 are given by the relation (25) below:

with 𝜃𝜃′𝐶𝐶2=tan(𝛼𝛼0)+ 2𝛽𝛽2+𝜙𝜙2 ;

𝑂𝑂1𝐶𝐶2= rb1 ∗ (�1 + 𝜃𝜃𝐶𝐶2
2); 𝑂𝑂2𝐶𝐶2=rb2 ∗ (�1 + 𝜃𝜃′𝐶𝐶2

2) ,𝑂𝑂1𝐶𝐶1= rb1 ∗ (�1 + 𝜃𝜃𝐶𝐶1
2);      𝑂𝑂2𝐶𝐶1=rb2 ∗ (�1 + 𝜃𝜃′𝐶𝐶1

2)

ii. Calculation of Radial Leakage Surfaces
The radial leakage surfaces vary in function of the rotation angle of gear. For the calculation of the radial 

leakage surfaces we will distinguish 05 possibilities:

- When 𝐶𝐶1 and 𝐶𝐶2 exists, i.e., when the profiles touch each other simultaneously. In this case the surfaces Sr1 and
Sr2 are simultaneously zero.

- When we are at the left of the initial position, and only 𝐶𝐶2 exists (Sr1>0 and Sr2=0),
- When we are at the left of the initial position with 𝐶𝐶1 and 𝐶𝐶2 does not exist (Sr1>0 and Sr2>0),
- When we are at the right of the initial position and only 𝐶𝐶2 exists (Sr1=0 and Sr2>0),
- When we are at the right of the initial position with 𝐶𝐶1 and 𝐶𝐶2 does not exist (Sr1>0 and Sr2>0),

The relations below give the expressions of the radial leakage surfaces in each of these cases cited above.

At the right of the initial position

• Case where Sr1 =0 and Sr2> 0:

(tan(𝛼𝛼0)-�(𝑟𝑟𝑎𝑎1
𝑟𝑟𝑏𝑏1

)2 − 1 < 𝜙𝜙1 < (−𝑟𝑟𝑠𝑠2
𝑟𝑟𝑠𝑠1

)(−tan(𝛼𝛼0) − 2𝛽𝛽2+�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 ))

According to figure 5,

where b is the face of  the tooth width.

with 𝑂𝑂2𝑇𝑇1= �𝑂𝑂1𝑂𝑂2
2 − 𝑟𝑟𝑏𝑏1

2 , 𝐺𝐺1𝑇𝑇1=𝑟𝑟𝑏𝑏1𝜃𝜃1,

with mes(𝑖𝑖, 𝑂𝑂1𝑂𝑂2����������⃗ ) =arccos(((x𝑂𝑂2-0)(1-0))/𝑂𝑂1𝑂𝑂2) and mes(𝑖𝑖, 𝑂𝑂1𝐵𝐵′1�����������⃗ )= arccos(((x𝐵𝐵′1-0)(1-0))/𝑂𝑂1𝐵𝐵′1).

⎩
⎨

⎧𝑥𝑥𝐶𝐶2 = rb1 ∗ (�1 + 𝜃𝜃𝐶𝐶2
2) sin(−Arctan(𝜃𝜃𝐶𝐶2) + 𝜃𝜃𝐶𝐶2 − inv(𝛼𝛼0) + 2𝛽𝛽1 − 𝜙𝜙1 )

𝑦𝑦𝐶𝐶2 = rb1 ∗ (�1 + 𝜃𝜃𝐶𝐶2
2) cos(−Arctan(𝜃𝜃𝐶𝐶2) + 𝜃𝜃𝐶𝐶2 − inv(𝛼𝛼0) + 2𝛽𝛽1 −𝜙𝜙1)

�      (23)  

⎩
⎨

⎧𝑥𝑥𝐶𝐶1 = rb2 ∗ (�1 + 𝜃𝜃′𝐶𝐶1
2) sin(Arctan(𝜃𝜃′𝐶𝐶1)− 𝜃𝜃′𝐶𝐶1 + inv(𝛼𝛼0)− π− 𝜙𝜙2 )

𝑦𝑦𝐶𝐶1 = rb2 ∗ (�1 + 𝜃𝜃′𝐶𝐶1
2) cos(Arctan(𝜃𝜃′𝐶𝐶1)− 𝜃𝜃′𝐶𝐶1 + inv(𝛼𝛼0)− π−𝜙𝜙2 )

�      (24)  

⎩
⎨

⎧𝑥𝑥𝐶𝐶2 = rb2 ∗ (�1 + 𝜃𝜃′𝐶𝐶2
2) sin(−Arctan(𝜃𝜃′𝐶𝐶2) + 𝜃𝜃′𝐶𝐶2 − inv(𝛼𝛼0) + π− 2𝛽𝛽2 − 𝜙𝜙2 )

𝑦𝑦𝐶𝐶2 = rb2 ∗ (�1 + 𝜃𝜃′𝐶𝐶2
2) cos(−Arctan(𝜃𝜃′𝐶𝐶2) + 𝜃𝜃′𝐶𝐶2 − inv(𝛼𝛼0) + π− 2𝛽𝛽2 −𝜙𝜙2 )

�       (25) 

Sr2 = 𝑏𝑏 ∗ 𝑂𝑂2𝐺𝐺1      (26) 

𝑂𝑂2𝐺𝐺1=𝑂𝑂2𝑇𝑇1-𝐺𝐺1𝑇𝑇1      (27)

𝜃𝜃1=mes(𝑂𝑂1𝑂𝑂2����������⃗ ,𝑂𝑂1𝑇𝑇1���������⃗ ) - mes(𝑂𝑂1𝑂𝑂2����������⃗ ,𝑂𝑂1𝐵𝐵′1�����������⃗ ) and mes(𝑂𝑂1𝑂𝑂2����������⃗ ,𝑂𝑂1𝑇𝑇1���������⃗ ) =arccos( 𝑟𝑟𝑏𝑏1
𝑂𝑂1𝑂𝑂2

)

mes(𝑂𝑂1𝑂𝑂2����������⃗ ,𝑂𝑂1𝐵𝐵′1�����������⃗ ) = mes(𝑖𝑖, 𝑂𝑂1𝑂𝑂2����������⃗ ) - mes(𝑖𝑖, 𝑂𝑂1𝐵𝐵′1�����������⃗ )           (28)

Establishment of an Analytical Model for Determining Leakage Surfaces in an External Tooth Spur Gear
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• Case where Sr1 >0 and Sr2> 0: (𝜙𝜙1 < tan(𝛼𝛼0)-�(𝑟𝑟𝑎𝑎1
𝑟𝑟𝑏𝑏1

)2 − 1 )

According to figure 6,

𝐸𝐸2𝑇𝑇2=�𝑂𝑂2𝐸𝐸2
2 − 𝑟𝑟𝑏𝑏2

2 ,𝐺𝐺2𝑇𝑇2=𝑟𝑟𝑏𝑏2𝜃𝜃2, 𝜃𝜃2=mes(𝑂𝑂2𝐸𝐸2���������⃗ ,𝑂𝑂2𝑇𝑇2���������⃗ ) - mes(𝑂𝑂2𝐸𝐸2���������⃗ ,𝑂𝑂2𝐽𝐽2��������⃗ ) 

with mes(𝑂𝑂2𝐸𝐸2���������⃗ ,𝑂𝑂2𝑇𝑇2���������⃗ ) = Arccos( 𝑟𝑟𝑏𝑏2
𝑂𝑂2𝐸𝐸2

).

mes(𝑖𝑖, 𝑂𝑂2𝐸𝐸2���������⃗ )= arccos(((x𝐸𝐸2-0)(1-0))/ 𝑂𝑂2𝐸𝐸2) and mes(𝑖𝑖, 𝑂𝑂2𝐽𝐽2��������⃗ )= arccos(((x𝐽𝐽2-0)(1-0)) /𝑂𝑂2𝐽𝐽2) Sr1 is given by the relation
(27)

At the left of the initial position

• Case where Sr1> 0 and Sr2= 0:

( (−tan(𝛼𝛼0) + 2𝛽𝛽1+�(𝑟𝑟𝑎𝑎1
𝑟𝑟𝑏𝑏1

)2 − 1 ) > 𝜙𝜙1 >-𝑟𝑟𝑠𝑠2
𝑟𝑟𝑠𝑠1

(tan(𝛼𝛼0)-�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 )))

Like the previous cases, 

with 𝑂𝑂′2𝑇𝑇′1 = �𝑂𝑂1𝑂𝑂′2
2 − 𝑟𝑟𝑏𝑏1

2 , 𝐺𝐺′1𝑇𝑇′1 =𝑟𝑟𝑏𝑏1𝜃𝜃′1 , 𝜃𝜃′1 =mes(𝑂𝑂1𝑂𝑂′2�����������⃗ ,𝑂𝑂1𝑇𝑇′1�����������⃗ ) - mes(𝑂𝑂1𝑂𝑂′2�����������⃗ ,𝑂𝑂1𝐽𝐽′1���������⃗ ) and mes(𝑂𝑂1𝑂𝑂′2�����������⃗ ,𝑂𝑂1𝑇𝑇′1�����������⃗ ) 

=arccos( 𝑟𝑟𝑏𝑏1
𝑂𝑂1𝑂𝑂′2

)

mes(𝑖𝑖, 𝑂𝑂1𝑂𝑂′2�����������⃗ ) =arccos(((x𝑂𝑂′2-0)(1-0))/𝑂𝑂1𝑂𝑂′2) and mes(𝑖𝑖, 𝑂𝑂1𝐽𝐽′1���������⃗ )=arccos(((x𝐽𝐽′1-0)(1-0))/𝑂𝑂1𝐽𝐽′1)

• Case where Sr1> 0 and Sr2> 0 (𝜙𝜙1 > −tan(𝛼𝛼0) + 2𝛽𝛽1+�(𝑟𝑟𝑎𝑎1
𝑟𝑟𝑏𝑏1

)2 − 1 )

with 𝐸𝐸′2𝐺𝐺′2 = 𝐸𝐸′2𝑇𝑇′2 -𝐺𝐺′2𝑇𝑇′2,𝐸𝐸′2𝑇𝑇′2=�𝑂𝑂2𝐸𝐸′2
2 − 𝑟𝑟𝑏𝑏2

2, 𝐺𝐺′2𝑇𝑇′2=𝑟𝑟𝑏𝑏2𝜃𝜃2 and

𝜃𝜃′2=mes(𝑂𝑂2𝐸𝐸′2�����������⃗ ,𝑂𝑂2𝑇𝑇′2�����������⃗ ) - mes(𝑂𝑂2𝐸𝐸′2�����������⃗ ,𝑂𝑂2𝐽𝐽′2����������⃗ ), mes(𝑂𝑂2𝐸𝐸′2�����������⃗ ,𝑂𝑂2𝑇𝑇′2�����������⃗ )  =arccos( 𝑟𝑟𝑏𝑏2
𝑂𝑂2𝐸𝐸′2

)

mes(𝑖𝑖,𝑂𝑂2𝐸𝐸′2�����������⃗ )=arccos(((x𝐸𝐸′2-0)(1-0))/𝑂𝑂2𝐸𝐸′2) and mes(𝑖𝑖, 𝑂𝑂2𝐽𝐽′2����������⃗ )= Arccos(((x𝐽𝐽′2-0)(1-0)) /𝑂𝑂2𝐽𝐽′2) Sr1 is given by relation 
(33)

iii. Calculation of Axial Leakage Surfaces
Case where Sr1= 0 and Sr2= 0:

((−𝑟𝑟𝑠𝑠2
𝑟𝑟𝑠𝑠1

)(−tan(𝛼𝛼0)− 2𝛽𝛽2+�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 ) ≤ 𝜙𝜙1 ≤ -𝑟𝑟𝑠𝑠2
𝑟𝑟𝑠𝑠1

(tan(𝛼𝛼0)-�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 ))

• Case where 𝑟𝑟𝑝𝑝 < 𝑟𝑟𝑏𝑏
According to figure 5 and figure 6:

 Sr1 = 𝑏𝑏 ∗ 𝐸𝐸2𝐺𝐺2               (29)

𝐸𝐸2𝐺𝐺2 = 𝐸𝐸2𝑇𝑇2 -𝐺𝐺2𝑇𝑇2         (30)

mes(𝑂𝑂2𝐸𝐸2���������⃗ ,𝑂𝑂2𝐽𝐽2��������⃗ ) =mes(𝑖𝑖, 𝑂𝑂2𝐸𝐸2���������⃗ ) - mes(𝑖𝑖, 𝑂𝑂2𝐽𝐽2��������⃗ )         (31)

Sr1 = 𝑏𝑏 ∗ 𝑂𝑂′2𝐺𝐺′1                (32)

𝑂𝑂′2𝐺𝐺′1=𝑂𝑂′2𝑇𝑇′1-𝐺𝐺′1𝑇𝑇′1         (33)

                                    (34)

Sr2 = 𝑏𝑏 ∗ 𝐸𝐸′2𝐺𝐺′2            (35)

                                                          (36)

Surface axiale= S𝐶𝐶1𝐵𝐵1𝐵𝐵′1𝐶𝐶2𝑂𝑂1𝑂𝑂′1𝐶𝐶1= S𝑂𝑂1𝐶𝐶1𝑂𝑂1𝑂𝑂′1𝐶𝐶2𝑂𝑂1 − S𝑂𝑂1𝐶𝐶1𝐵𝐵1𝐵𝐵′1𝐶𝐶2𝑂𝑂1     (37)
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mes(𝑂𝑂1𝑂𝑂′2�����������⃗ ,𝑂𝑂1𝐽𝐽′1���������⃗ ) = mes(𝑖𝑖, 𝑂𝑂1𝑂𝑂′2�����������⃗ ) - mes(𝑖𝑖, 𝑂𝑂1𝐽𝐽′1���������⃗ )                                    

mes(𝑂𝑂2𝐸𝐸′2�����������⃗ ,𝑂𝑂2𝐽𝐽′2����������⃗ )=mes(𝑖𝑖,𝑂𝑂2𝐸𝐸′2�����������⃗ ) - mes(𝑖𝑖,𝑂𝑂2𝐽𝐽′2����������⃗ )                                            



      

  

 

 

  

        

 

   

   

   

     

    

   

  

  
  

   
 

  
  

   

 

 

      

      
      
      

 

 

   

Avec triangle_𝑂𝑂1𝐶𝐶2𝑂𝑂2𝑂𝑂1=0.5𝑂𝑂1𝐶𝐶2*E*sin(𝜃𝜃𝐶𝐶2)et triangle_𝑂𝑂1𝐶𝐶1𝑂𝑂2𝑂𝑂1=0.5*𝑂𝑂1𝐶𝐶1*E*sin(𝜃𝜃𝐶𝐶1)

S𝑂𝑂2𝐶𝐶2𝑂𝑂′1𝑂𝑂1𝑂𝑂2=0.5*𝑟𝑟𝑎𝑎2
2 *(2*𝜃𝜃𝑟𝑟𝑎𝑎2),S𝑂𝑂2𝑂𝑂1𝐶𝐶1𝑂𝑂2=0.5*𝑟𝑟𝑏𝑏2

2 ((�(𝑟𝑟𝑎𝑎2
𝑟𝑟𝑏𝑏2

)2 − 1 )3-𝜃𝜃𝐶𝐶2
3)/3

and S𝑂𝑂2𝐶𝐶2𝑂𝑂′1𝑂𝑂2=0.5*𝑟𝑟𝑏𝑏2
2 *((�(𝑟𝑟𝑎𝑎2

𝑟𝑟𝑏𝑏2
)2 − 1 )3-𝜃𝜃′𝐶𝐶2

3)/3 

with S𝑂𝑂1𝐶𝐶1𝐵𝐵1𝑂𝑂1=0.5*rb12*(𝜃𝜃𝐶𝐶1
3)/3, 

SO1B1B′1O1=(rc1+rp1)*o1c*sin(ζ)-rc12*(qmax-qmin)+ rp12*(q2max-q2min)

𝑂𝑂1c= �(𝑥𝑥𝑐𝑐 − 0)2 + (𝑦𝑦𝑐𝑐)2

q2max=(π/2)-(ζ+Ωs) and q2min=(π/2)-(π/N1)

qmin= Arccos((1*(𝑥𝑥𝐵𝐵-𝑥𝑥𝐸𝐸)+0*(𝑦𝑦𝐵𝐵 -𝑦𝑦𝐸𝐸))/EB) and qmax=qmin+acos(((𝑥𝑥𝐶𝐶 -𝑥𝑥𝐸𝐸)*(𝑥𝑥𝐶𝐶 -𝑥𝑥𝐸𝐸)+(𝑦𝑦𝐶𝐶 -𝑦𝑦𝐸𝐸)*(𝑦𝑦𝐶𝐶 -𝑦𝑦𝐸𝐸))/rc12) 

SO1B′1C2O1=0.5*rb12*(θC2
3)/3.

• Case where 𝑟𝑟𝑝𝑝 ≥ 𝑟𝑟𝑏𝑏
According to figures 5 and 6

 

S𝑂𝑂1𝐶𝐶1𝑂𝑂1𝑂𝑂′1𝐶𝐶2𝑂𝑂1=triangle_𝑂𝑂1𝐶𝐶2𝑂𝑂2𝑂𝑂1-triangle_𝑂𝑂1𝐶𝐶1𝑂𝑂2𝑂𝑂1-S𝑂𝑂2𝐶𝐶2𝑂𝑂1𝑂𝑂′1𝐶𝐶1𝑂𝑂2    (38)

S𝑂𝑂2𝐶𝐶2𝑂𝑂1𝑂𝑂′1𝐶𝐶1𝑂𝑂2= S𝑂𝑂2𝐶𝐶2𝑂𝑂′1𝑂𝑂2+ S𝑂𝑂2𝐶𝐶2𝑂𝑂′1𝑂𝑂1𝑂𝑂2+ S𝑂𝑂2𝑂𝑂1𝐶𝐶1𝑂𝑂2             (39)

S𝑂𝑂1𝐶𝐶1𝐵𝐵1𝐵𝐵′1𝐶𝐶2𝑂𝑂1= S𝑂𝑂1𝐶𝐶1𝐵𝐵1𝑂𝑂1 + S𝑂𝑂1𝐵𝐵1𝐵𝐵′1𝑂𝑂1 + S𝑂𝑂1𝐵𝐵′1𝐶𝐶2𝑂𝑂1  (40)

Surface axiale = S𝐶𝐶1𝑝𝑝1𝑝𝑝1′𝐶𝐶2𝑂𝑂1𝑂𝑂′1𝐶𝐶1 = S𝑂𝑂1𝐶𝐶1𝑂𝑂1𝑂𝑂′1𝐶𝐶2𝑂𝑂1- S𝑂𝑂1𝐶𝐶1𝑝𝑝1𝑝𝑝1′𝐶𝐶2𝑂𝑂1      (41)

S𝑂𝑂1𝐶𝐶1𝑝𝑝1𝑝𝑝1′𝐶𝐶2𝑂𝑂1= S𝑂𝑂1𝑝𝑝1′𝐶𝐶2𝑂𝑂1 + S𝑂𝑂1𝑝𝑝1𝑝𝑝1′𝑂𝑂1 + S𝑂𝑂1𝐶𝐶1𝑝𝑝1𝑂𝑂1     (42)
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IV. Results

a) Simulation Results for the Modeling of a Gear
By applying the equations (1) to (13), we obtain 03 types tooth profile:

- The profile made up of the gear tip, the involute part, a line segment, a circular part, and the tooth root (𝑟𝑟𝑝𝑝 < 𝑟𝑟𝑏𝑏
and arccos(2𝑟𝑟𝑏𝑏*𝑟𝑟𝑝𝑝 /(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2))> 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 ).

- The profile made up of the gear tip, the involute part, a circular portion, and the tooth root (𝑟𝑟𝑝𝑝 < 𝑟𝑟𝑏𝑏 and 
arccos(2𝑟𝑟𝑏𝑏*𝑟𝑟𝑝𝑝 /(𝑟𝑟𝑏𝑏2 + 𝑟𝑟𝑝𝑝2))≤ 𝜁𝜁𝑚𝑚𝑎𝑎𝑥𝑥 ).

- The profile made up of the gear tip and the involute part. Here the involute part is limited at root circle (𝑟𝑟𝑏𝑏 ≤ 𝑟𝑟𝑝𝑝).

For the application, we have chosen 03 types of gears whose respective parameters are recorded in table 1 below.

Table 1: Parameters of 03 gears used for simulation

Number of 
teeth m(module) 𝜶𝜶(pressure 

angle)
x(shift 

coefficeint) b(mm)

Gear 1 20 10 20° 0 100
Gear 2 40 10 20° -0.2 100
Gear 3 76 4 20° 0 100

Figure 8 below is a detailed view of the half of the tooth profile taken from the simulation result for the 
specific case of gear 1 in table 1. 

with S𝑂𝑂1𝑝𝑝1′𝐶𝐶2𝑂𝑂1=0.5*rb12*((θC2
3) -θrp 1

3)/3,S𝑂𝑂1𝑝𝑝1𝑝𝑝1′𝑂𝑂1=rp12*(q3max-q2min)) and q3max=Arctan(yp1/xp1)

S𝑂𝑂1𝐶𝐶1𝑝𝑝1𝑂𝑂1=0.5*rp12*(θ𝐶𝐶1
3-θrp 1

3)/3 with θrp 1=�(𝑟𝑟𝑝𝑝1

𝑟𝑟𝑏𝑏1
)2 − 1



 

 

 

    

 

 

 

    

 

  

 

 

  
     

      
      

  
  

The particularity here is the presence of a straight part on our teeth, namely the segment [BC].
Figure 9 below is a detailed view of the half of the tooth profile taken from the simulation result for the 

specific case of gear 2 in table 1.

The profile is made up of the tooth top, the involute part, the circular part, and tooth root. Here, the straight 
part no longer exists.

A detailed view of the half of the tooth profile resulting from the simulation result for the particular case of 
gear 3 of table 1 is represented in figure 10 below.

Figure 8: Detailed view of the half of tooth profile of gear 1 of table 1. Here =93,9693mm; =89,5mm

Figure 9: Detailed view of the half of the tooth of gear 2 in table 1. Here, =187.9385 mm;=185.5 mm
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Figure 10: Detailed view of the half of the tooth in gear 3 of table 1. Here=142.8333 mm;= 147 mm



 

   

 

  
 

 

  

 
 

   

 

 
 

In this particular case, the root radius is greater than the base radius and the tooth profile consists only of 
the involute part and top part.

NB: To facilitate the comparative study with other models, during the simulation, we brought back the initial position 
at the position where (O1O2) passes simultaneously through the middles of the gear tip tooth and the pinion root. 
That is after rotating the driver gear of 𝛽𝛽1 on counterclockwise direction.

Figure 11: Evolution of the radial leakage surfaces 1 and 2 as a function of the angle of rotation of the driver gear. 
Case of the gearing system of table 2

The result of our model for calculating the pockets volumes corresponding to the gearing system of table 2 
has generated the curve of figure 12 below. This figure gives the evolution of the pockets volumes (axial leakage 
surface multiplied by the tooth width) as a function of the angle of rotation of the driver gear on the interval [-13°,13°]. 
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b) Results of Calculations of Radial and Axial Leakage Surfaces
To validate our model, the simulation of our equations and formulas developed above (equations (13) to 

(42)) on Matlab 16 was carried out with the particular case of a gear whose characteristics are grouped in table 2 
below.

Table 2: Parameters of the gear used for the simulation

Number of 
teeth m(module) 𝜶𝜶(pressure 

angle)
x(shift 

coefficient) b(mm)

pinion 76 4 20° 0 100
gear 76 4 20° 0 100

The application of our model for calculating of the radial leakage surfaces 1 and 2 relative to the gear of 
table 2 has generated the curves of figure 11 below. This figure gives the evolution of the radial leakage surfaces (Sr1

and Sr2) as a function of the rotation angle of the drive gear on the interval [-13°, 13°].



  

  
  

   
 

 
  

  
   

  

   
 

 
 

  

 

  
 

 
 

Figure 12: Radial leakage volume corresponding to the parameters in table 2

c) Results Interpretation
The curves of Figure 11 justify the similarity of the radial and axial leakage surfaces on each side of the initial 

position (𝜙𝜙1=0). This result agrees with the surfaces evolution of figure 2. we observe that On figures 2.a) to 2.h) the 
axial surface reaches its minimum at the initial position (𝜙𝜙1=0). This observation agrees with the curve of figure 12.

More we move away from the initial position (𝜙𝜙1=0), the pockets volumes increase. This result agrees with 
the observation of figures 2.a) to 2.h).

The curves in figure 11 show that at the left of the initial position, the radial leakage surface one is always 
greater than the radial leakage surface two and, at the right of the initial position, it is the opposite phenomenon. This 
result agrees with the observations of figure 2.

In figure 11, the two profiles bordering the radial surface 1 (𝑆𝑆𝑟𝑟1) meet when 𝜙𝜙1 belongs in the interval [-3,75°; 
6,5°]. For the radial surface 2 (𝑆𝑆𝑟𝑟1), this phenomenon occurs in the interval [-6,5°; 3,75°].

V. Model Validation

The validation of our model follows from a comparative study between the results of our model and the 
results of Abdelilah Lasri and al [13] and Diab Y. and al [10] for the same gear system. We have superimposed the 
curves of our model and those of the reference models.

a) Superposition of the Radial Surfaces Curves of our Model and those Resulting from the Model of Abdelilah Lasri 
[13]

Figure 13 below is the result of the superposition of the radial leakage surfaces (Sr1 and Sr2). In this figure, 
the leakage surfaces curves of our model are in blue colour and the curves of Abdelilah Lasri’s model [13] are in red.

Rotation angle of driver gear in degree
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Figure 13: Superposition of radial leakage surfaces from our model (in blue) and those from Abdelilah Lasri's model 
[13] (in red color)

Looking at Figure 13, the radial leakage surfaces of our model and the reference model are merged. The 
relative deviations between the values from these two (02) models are of the order of 10-2.

b) Superposition of Pocket Volume Curves from our Model and those from the Diab’s Model [10]
Figure 14 below is the result of the superposition of pocket volumes. On this figure, the curve of pocket 

volumes from our modelis blue and the Diab’s model curve [10] is black.
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Figure 14: Superposition of pocket volumes from our model (in blue) and those from Y. Diab's[10] model (in black)

On figure 14, the two curves are almost merged. In the neighbourhood of the initial position, there is a 
minimal difference between the 02 curves. Outside the interval [-10°; -10°] the two curves are identical. The relative 
deviations between the values from the 02 curves, is at the order of 10-2.

The curves of the figures 13 and 14 and the relative deviations between the results from our model and the 
reference models allow us to state with certainty that the model developed in this work is valid and meets our set 
objectives. The model developed in this work allows us to calculate the exact values of the axial and radial leakage 
surfaces of the lubricant in a gear.

VI. Conclusion 

A better optimization of the power losses by the lubricant trapping in the inter-tooth space requires a 
preliminary work of total lifting of the veil on the gear inter-tooth space during the movement. In this perspective, we 
have established a purely analytical model allowing to accurately evaluating the radial and axial leakage surfaces of 
the lubricant in the inter-tooth space of external spur gears.

This model was developed based on the parametric equations of a tooth profile and the exploitation of the 
involute properties, followed by the surface integrations delimited by the contour representing their exact boundary. 
The results are presented as curves of the evolution of the leakage surfaces (radial and axial) as a function of the 
driving gear's rotation angle. The curve of the evolution of the axial leakage surfaces as a function of the rotation 
angle is a symmetrical parabola, and the two curves of the evolution of the radial leakage surfaces are symmetrical 
(relative to each other). These results agree with the observation of the lubricant behavior in the inter-tooth space 
during gear movement. Far from numerical approximations, this model is an analytical formula allowing us to 
evaluate the exact leakage surfaces directly, according to the geometrical parameters of the gears.

Establishment of an Analytical Model for Determining Leakage Surfaces in an External Tooth Spur Gear
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