
Bluelock a Tool to Prevent Bluetooth Attacks1

Luz Adriana Peña Salazar2

Received: 28 November 2021 Accepted: 19 December 2021 Published: 29 December 20213

4

Abstract5

The mobile device manufacturers and Internet Of Things are searching for more compatible6

and easy to connect protocols that increase coverage, which generates the user an effective7

experience when using different devices. Nevertheless, the constant updating process opens a8

security gap that exposes the users’ personal information. Bluetooth is a communication9

protocol openly used by manufacturers because of their excellent information transfer10

capacities, allowing hackers to exploit it. The manufacturers work daily, generating security11

patches for communication protocols but this hasn’t been enough to mitigate vulnerabilities.12

The security has always been on the manufacturer’s side but the final user is limited to use a13

few security customization options to protect his network perimeter. Based on the wireless14

devices’ background we wonder, Is there any way in which the user has the chance to reduce15

the possible dangers that wireless devices face? We can answer this question through the16

development of a research in the more vulnerable areas, simulating the attacks on a mobile17

device to generate a possible solution that allows the user to have more control over his18

bluetooth connections.19

20

Index terms— bluetooth, android, security, attacks.21

1 Introduction22

dvances in wireless communication have faced compatibility issues, which has forced technology manufacturers23
to regulate communication protocols. One of the most popular has been Bluetooth used to interconnect mobile24
devices and IoT technology. This protocol was created in 1994 by the electric engineer Jaap Haartsen and it25
has been updated throughout the years that has allowed it to be one the best protocols due to its information26
transfer rate.27

Because of its popularity, coming from manufacturers, this has been the target of hackers who have used28
vulnerabilities to attack other users and obtained their private information from their mobile devices. The29
response to these attacks is usually reactive. Such attacks have compromised thousands of users’ information,30
even installing apps that act like malware, that allows access to the peripherals connected to the victim’s device,31
like a camera, mic, GPS, and others.32

Smartphones are the most used devices for Bluetooth technology due to its features and the storage capacity33
in Android. The manufacturers keep reactive during the attacks, generating patches and updates, saving the34
security recommendations.35

To generate a preventive solution, we propose the user is able to manage the Bluetooth interface so it can be36
used without exposing private information when the device is active. To accomplish this, a testing environment37
is set up to deploy Bluetooth attacks to identify possible vulnerabilities that could be reduced by an Android38
app for Smartphones.39

2 a) Glossary40

Android is a mobile operating system based on a modified version of the Linux kernel and other open source41
software, designed primarily for touchscreen mobile devices such as smartphones and tablets. Android is developed42
by a consortium of developers known as the Open Handset Alliance and commercially sponsored by Google.43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

9 APP DEVELOPMENT

? Attacks: In this project an attack is a cyberattack, and it is the attempt caused by someone who wants44
to get control over an informatic system once he gets access to it. The attacks have several purposes in order45
to cause damage through espionage to get money or to find vulnerabilities in the system. ? BlueLock: It is46
the created tool for Android devices that allows control over the Bluetooth interface by the user to manage47
connectivity among active devices. ? Bluetooth: It is a short-range wireless technology standard that is used48
for exchanging data between fixed and mobile devices over short distances using UHF radio waves in the ISM49
bands, from We use the Bluelog tool from Kali Linux that allows us to see and register detectable devices on the50
Bluetooth network and it is executed as you will find below: ??———————— Blue Scanner is another Kai51
Linux tool that allows us to scan through the Bluetooth network adapter, capturing connectivity features from52
connected devices on the network and it is executed as follows root@kali:~# btscanner Keyword ”i” produces53
and scans all devices on the network and generates a file directory called by the MAC’s device name with all the54
information obtained, using these tools we can start to validate the attacks and check their functionality. used55
interchangeably when referring to internal cyber security tests, but they’re not exactly the same. Penetration56
testing is a type of security test in which an organisation hires a certified professional to assess the strength of its57
cyber security defences. The goal of ethical hacking -like criminal hacking -is to find security vulnerabilities in58
an organisation’s systems. However, as the word ’ethical’ suggests, the person conducting the attack must have59
the organisation’s approval before proceeding. ? Information security: The state of being protected against the60
unauthorized use of information, especially electronic data, or the measures taken to achieve this.root@kali:~#61
bluelog Bluelog (v1.1.2) by MS3FGX -62

3 Global Journal of Researches in Engineering63

? Vulnerability: It is a failure in the security system in which the user can access a system to manipulate64
information, app or take control over the system.65

4 II.66

5 Attack Deployment67

Knowing the different types of attacks over Bluetooth, they are possible to duplicate through Pentesting. The68
tests done are known as ”white box” (tandem), because we implement the attack environment using the platform69
pentesting Kali Linux, keeping track of every tool and designing the hacking tests for Bluetooth.70

To begin, through Kali Linux we ensure that Bluetooth is activated using the following commands:71
? Bluejacking attack: To make this possible, we need to create a contact user, instead of the name, the message72

will be written, in the directory folder that will act as the attacker and the contact user is saved. After That,73
an area with several mobile devices is found and the option ”send via Bluetooth” is chosen, and it is sent to the74
target devices. ? Bluesmack: a line executed directly from the attacker’s console device. which deploys several75
calls in a specific frame of time, causing the Bluetooth denial service in the host or hacked device. The script76
is: lroot@kali:~# while read r; do l2ping -s 50 84:C7:EA:57:36:D7; done < numscans we created a file called:77
numscans with a timer from 1 to n, to be used in the script and avoid memory leaking in the attacker’s device.78

root@kali:~# while read r; do l2ping -s 50 84:C7 We can see the Bluetooth protocol is designed to facilitate79
device connection, and it is a mandatory approach for IoT communication devices, so through the software we80
designed we do not want to limit or block the protocol’s functionality automatically by a service or app, but81
we want to give the user this option, designing an app that allows him to see the connectivity events, paired82
devices, and allows the user the chance to block any device at anytime. The diagram shows the device and83
the app running, participating in different communications with different devices, the device is in a susceptible84
environment when it is often attacked via Bluetooth. The device has a Bluetooth interface that communicates85
with the app (Bluelock) that manages the Bluetooth adapter.86

6 III.87

7 Design Phase88

The app (BlueLock) has an event filter that detects specific changes in the Bluetooth adapter, such as incoming89
connections, and registering all the information in a database, and the app log.90

IV.91

8 Development Phase92

9 App development93

As a solution a mobile app for Android is proposed that allow people to control the Bluetooth interface94
communication, turn on and off the Bluetooth controller, enable finding new devices, consult paired devices,95
check the Bluetooth event’s logs, block access to multiple devices.96

2

10 App features97

1. User’s interface to control the Bluetooth device. The state the device is found, is extremely important for the98
app. Therefore, if the app finds a device and this is active, when establishing a connection, it can be blocked to99
avoid negative actions to our device from this unwanted device. The following method blockDevice validates the100
state from this device and updates the blocked column from the Devices chart.101

11 i. Bluejacking attack results102

After executing the test, we can see the app blocks the contact sent, blocking all the communication channels103
between those devices.104

12 b) Bluesnarfing attack test i. Deploying attack105

This attack is similar to the previous one, but it enters and steals information from the attacked device. We106
execute the same previous commands and we get the results shown in the console. root@kali:~# sdptool107
browse –tree –l2cap C0:8C:71:84:94:A1 Failed to connect to SDP server on C0:8C:71:84:94:A1: Connection108
timed out root@kali:~# sdptool browse –tree –l2cap C0:8C:71:84:94:A1 Failed to connect to SDP server on109
C0:8C:71:84:94:A1: Operation already in progress root@kali:~# sdptool browse –tree –l2cap C0:8C:71:84:94:A1110
Failed to connect to SDP server on C0:8C:71:84:94:A1: Connection timed out root@kali:~#111

13 ii. Bluesnarfing attack results112

The attacked device avoids the description services reading and keeps inaccessible to the attacker device.113

14 VI.114

15 Analysis Results115

When we deployed the attacks and used the app Bluelock, we got a positive result due to the effectiveness116
when blocking attacker devices trying to deploy their attacks. In the bluejacking, it does not allow incoming117
notifications from the corrupted contact, and in the Bluesnarfing it was completely stopped since the device tried118
to start communication.119

The app, through the blocking device functionality, offers better security and control of the device Bluetooth120
connections, because it allows the user to choose the devices that will be able to establish a connection and keep121
track of the bluetooth connections events. After testing the file transfer and Bluetooth attacks we see in the122
app the functionality filter for the bluetooth adapter states works as expected, so its functionalities could be123
expanded, defining protocols for every single state of the Bluetooth adapter, increasing the app’s usability and124
security to protect our information from Bluetooth attacks.125

The log registration allows us to access the Bluetooth adapter communication events in a short time range126
and to detect unusual events that take place in the Bluetooth interface range.127

The functionality of the app consists in the device’s bluetooth adapter control. In case the interface does not128
respond, it will need to be reseted to get control again, this action can be done by BlueLock.129

An app that allows us to see the Bluetooth interface actions is not easily found, because they happen under a130
transparent communication cape for the user. So with the app BlueLock we can offer a better control of the use131
that bluetooth connections represent and the events at the moment of establishing connections.132

V.133

16 Conclusions134

The synergy between hacking and the bluetooth attacks, along with software development, allows them to135
complement each other, facilitating the design, development, testing and deploying of software solutions that136
improve security in device communication interface, and allow the implementation of closed mobile communication137
systems.138

Most Bluetooth attacks are done while the device’s interface is active, due to the protocol working as a139
receptor waiting for incoming communications and in that state attacks like Bluesnarfing can take place and140
steal information, taking advantage of the human factor to reach closeness of the target device.141

Software solutions for mobile devices focused on connection validation and data packages can improve Android142
devices’ security in places like apartment buildings where there are a lot of mobile devices active and we have a143
higher chance to be hacked in such environments. BlueLock is a security app oriented to connectivity events that144
allows unwanted device detection and offers the chance to block them at any time. This is possible by validating145
the Bluetooth interface state through Intent filters, that is sensible to the Bluetooth adapter changes.146

The robustness of the testing set for BlueLock solution, has given positive security results that allow us to147
block BLuejacking or Bluesnarfing attacks coming from previously blocked devices. In conclusion, we are allowing148
the user to be responsible for managing the device he allows or not to connect. 1149

1© 2022 Global Journals

3

16 CONCLUSIONS

Figure 1:

4

2

Figure 2: 2 .

8

Figure 3: Fig. 8 :

5

16 CONCLUSIONS

Global
Jour-
nal
of
Re-
searches
in
En-
gi-
neer-
ing
(
)
F
1
Year
2022
18
Vol-
ume
XXII
Is-
sue
er-
sion
I
V
I
Year
2022
1
20
er-
sion
I
V
I
Is-
sue
Vol-
ume
XXII
(
)
F
Global
Jour-
nal
of
Re-
searches
in
En-
gi-
neer-
ing

//BroadcastReceiver private final BroadcastReceiver mBR = new
BroadcastReceiver() { @Override public void onReceive(Context
context, Intent intent) { final String action = intent.getAction();
String evento = ””; boolean bloqueo = false; final Uri uriData =
intent.getData(); event evt = validaUri(uriData, action); eventsDB-
Helper dbHelper = new eventsDBHelper(getApplicationContext());
String log = ””, showToastLog = ””; boolean logger;
if(action.equals(BluetoothAdapter.ACTION_STATE_CHANGED)
||action.equals(BluetoothAdapter.ACTION_DISCOVERY_STARTED)
||action.equals(BluetoothAdapter.ACTION_DISCOVERY_FINISHED)
||action.equals(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED))
{ final int estado = intent.getIntExtra(BluetoothAdapter.EXTRA_STATE,
BluetoothAdapter.ERROR); switch (estado) { case
BluetoothAdapter.STATE_OFF: evento = ”BluetoothAdapter.STATE_OFF”; log += lo-
gAdapter(uriData,evento); break; case BluetoothAdapter.STATE_ON:
evento = ”BluetoothAdapter.STATE_ON”;
log += logAdapter(uriData,evento); break; case Blue-
toothAdapter.STATE_TURNING_OFF: evento = ”BluetoothAdapter.STATE_TURNING_OFF”;
log += logAdapter(uriData,evento); break; case Blue-
toothAdapter.STATE_TURNING_ON: evento = ”BluetoothAdapter.STATE_TURNING_ON”;
log += logAdapter(uriData,evento); break; Fig. 3: case
BluetoothAdapter.STATE_CONNECTING: evento = ”BluetoothAdapter.STATE_CONNECTING”; log
+= logAdapter(uriData,evento); BluetoothDevice device = in-
tent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE); bloqueo =
validaBloqueo(device.getAddress()); UUID uuid = UUID.randomUUID();
if(bloqueo){ try { Log.w(”ACTION_ACL_CONNECTED”,”Entró a
removeBond”); log += logAdapter(uriData,evento); showToast(”Dispositivo
bloqueado (”+uuid+”) : ”+device.getAddress()+” : ”+ device.getName());
} catch (Exception e) { Log.w(”ACTION_ACL_CONNECTED”,
e.getMessage()); evento = ”Error de Dispos-
itivo Bloqueado (”+uuid+”): ”+device.getAddress()+”; ”+de-
vice.getName(); } log += logAdapter(uriData,evento); } break;
Fig. 4: case BluetoothAdapter.STATE_CONNECTED: evento =
”BluetoothAdapter.STATE_CONNECTED”;
log += logAdapter(uriData,evento); break; case Blue-
toothAdapter.STATE_DISCONNECTING: evento = ”BluetoothAdapter.STATE_DISCONNECTING”;
log += logAdapter(uriData,evento); break; case Blue-
toothAdapter.STATE_DISCONNECTED: evento = ”BluetoothAdapter.STATE_DISCONNECTED”;
log += logAdapter(uriData,evento); break; case Blue-
toothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE: evento
= ”BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE”;
© 2022 Global Journals log += logAdapter(uriData,evento); break; case
BluetoothAdapter.SCAN_MODE_CONNECTABLE: evento = ”BluetoothAdapter.SCAN_MODE_CONNECTABLE”;
log += logAdapter(uriData,evento); break; case Blue-
toothAdapter.SCAN_MODE_NONE: evento = ”BluetoothAdapter.SCAN_MODE_NONE”; log +=
logAdapter(uriData,evento); break; default: break; } logger = writeLog(log,
”BluetoothAdapter.txt”); evt.setEventLog(evento); dbHelper.saveEvent(evt);
} logger = writeLog(log, ”BluetoothAdapter.txt”); showToast(showToastLog);
} Log.© 2022 Global Journals dbHelper.saveEvent(evt); try {
evt.setEventLog(evento); if(bloqueo){ log += logAdapter(uriData,
evento); UUID uuid = UUID.randomUUID(); evento = ”BluetoothAdapter.ACTION_CONNECTION_STATE_CHANGED
:” + estado; bloqueo = validaBloqueo(device.getAddress()); final int estado =
intent.getIntExtra(BluetoothAdapter.EXTRA_CONNECTION_STATE,
BluetoothAdapter.ERROR); BluetoothDevice device = in-
tent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
if(action.equals(BluetoothAdapter.ACTION_CONNECTION_STATE_CHANGED))
{ if(action.equals(BluetoothAdapter.ERROR)){ evento = ”Dispositivo Bloqueado (”+uuid+”): log +=
String.valueOf(BluetoothAdapter.ERROR); ”+device.getAddress()+”; ”+de-
vice.getName(); evento = ”BluetoothAdapter.ERROR”;
log += logAdapter(uriData,evento); log += logAdapter(uriData,evento);
showToast(”Dispositivo bloqueado (”+uuid+”) : ”+device.getAddress()+”
: ”+ evt.setEventLog(evento); dbHelper.saveEvent(evt); show-
ToastLog = ”BluetoothAdapter.ERROR”; logger = writeLog(log,
”BluetoothAdapter.txt”); showToast(showToastLog); } Fig. 5:
if(action.equals(BluetoothDevice.ACTION_FOUND)){ BluetoothDevice
device = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
int rssi = intent.getShortExtra(BluetoothDevice.EXTRA_RSSI,
Short.MIN_VALUE); Log.w(”ACTION_ACL_CONNECTED”,”Entróa AC-
TION_ACL_CONNECTED”+device.getName()+”\n”+device.getAddress()+”\n”+rssi);
device dev = new device(); dev.setId(0);
dev.setName(device.getName()); dev.setAddress(device.getAddress());
dev.setContentDesc(String.valueOf(rssi)); dev.setBloqueado(String.valueOf(false));
dev.setTime(String.valueOf(Calendar.getInstance().getTime()));
dev.setBonded(String.valueOf(false)); dev.setHashCode(String.valueOf(device.hashCode()));
boolean result = guardaDispositivo(dev); evento = ”BluetoothDevice.ACTION_FOUND”; log
+= logAdapter(uriData,evento); evt.setEventLog(evento);
dbHelper.saveEvent(evt); logger = writeLog(log,
”BluetoothAdapter.txt”); showToastLog = ”Blue-
toothAdapter.ACTION_FOUND”; showToast(showToastLog); } Fig.
6: if(action.equals(BluetoothDevice.ACTION_ACL_CONNECTED))
{ Log.d(”ACTION_ACL_CONNECTED”,”Entró
a ACTION_ACL_CONNECTED”); log += lo-
gAdapter(uriData,”BluetoothDevice.”+BluetoothDevice.EXTRA_NAME+”
-”+BluetoothDevice.ACTION_ACL_CONNECTED); evento = ”BluetoothDevice.ACTION_ACL_CONNECTED”;
evt.setEventLog(evento); device.getName()); /* } catch (Exception e)
{ * Valida el estado del dispositivo y actualiza la columna bloqueado
Log.e(”ACTION_ACL_CONNECTED”, e.getMessage()); * */ evento
= ”Error de Dispositivo Bloqueado (”+uuid+”):
public boolean blockDevice(device dev){ ”+device.getAddress()+”;
”+device.getName(); boolean result = false; } String estado = ”bloqueado”;
}else{ try { try { Log.d(”ACTION_ACL_CONNECTED”, ”Start Pairing...”);
Method m = device.getClass() .getMethod(”createBond”, (Class[]) null);
String args [] = new String[1]; args[0] = dev.getAddress(); Cursor cursor =
this.getDevice(devicesContract.deviceEntry.tableName,null,devicesContract.deviceEntry.address+
m.invoke(device, (Object[]) null); ”=?”,args,null,null,null);
Log.w(”ACTION_ACL_CONNECTED”, ”Pairing finished.”); if
(cursor.getCount() > 0){ evento = ”Dispositivo
Conectado (”+uuid+”): ”+device.getAddress()+”; ”+de-
vice.getName(); log += logAdapter(uriData,evento); } catch
(Exception e) { cursor.moveToFirst(); String bloqueado = cur-
sor.getString(cursor.getColumnIndex(devicesContract.deviceEntry.bloqueado));
if(bloqueado == null){ Log.w(”ACTION_ACL_CONNECTED”,
e.getMessage()); estado = ”bloqueado”; evento = ”Error
Dispositivo Conectado (”+uuid+”): ”+device.getAddress()+”; ”+de-
vice.getName(); } else if(bloqueado.equals(”bloqueado”)) { } }
if(action.equals(BluetoothDevice.ACTION_ACL_DISCONNECTED)) { log
+= logAdapter(uriData,”BluetoothDevice.”+BluetoothDevice.EXTRA_NAME+”
-”+BluetoothDevice.ACTION_ACL_DISCONNECTED); evento = ”BluetoothDevice.ACTION_ACL_DISCONNECTED”;
evt.setEventLog(evento); estado = ”desbloqueado”; } }else{
Log.e(”deviceDBHelper”, ”Error bloqueando Dispositivo no empare-
jado:”+dev.getAddress()); } ContentValues cv = new ContentValues();
dbHelper.saveEvent(evt); logger = writeLog(log, ”BluetoothAdapter.txt”);
showToastLog = ”BluetoothDevice.”+BluetoothDevice.EXTRA_NAME+”
-”+BluetoothDevice.ACTION_ACL_DISCONNECTED; show-
Toast(showToastLog); } } }; Fig. 7: Adapter State Connection
Validation function cv.put(devicesContract.deviceEntry.bloqueado,
estado); SQLiteDatabase db = getWritableDatabase();
db.update(devicesContract.deviceEntry.tableName, cv, devicesCon-
tract.deviceEntry.address + ”=’” + dev.getAddress()+”’”, null); result
= true; }catch (Exception e){ Log.e(”deviceDBHelper”, ”Error bloqueando
Dispositivo: ” + e.toString());

Global
Jour-
nal
of
Re-
searches
in
En-
gi-
neer-
ing
(
)
F
1
Year
2022
17
Vol-
ume
XXII
Is-
sue
er-
sion
I
V
I
Global
Jour-
nal
of
Re-
searches
in
En-
gi-
neer-
ing
(
)
F
1
Year
2022
19
Vol-
ume
XXII
Is-
sue
er-
sion
I
V
I

[Note: Method m = device.getClass() .getMethod(”removeBond”, (Class[]) null); m.invoke(device, (Object[])
null); evento = ”Dispositivo Bloqueado (”+uuid+”): ”+device.getAddress()+”; ”+de-
vice.getName(); w(”ACTION_ACL_CONNECTED”,”Entró a removeBond”); Method m = device.getClass()
.getMethod(”removeBond”, (Class[]) null); m.invoke(device, (Object[]) null);]

Figure 4:

6

[Segunda Edición and México] , Segunda Edición , México . Pearson.150

[Clarín ()] Advierten sobre los peligros de utilizar el Bluetooth de tu celular, Clarín . https://www.clarin.151
com/tecnologia/advierten-peligros-utilizar-bluetooth-celular_0__WpofinjL.html152
2019. Buenos Aires, Argentina. Recuperado de.153

[Weed ()] Bluetooth IoT Applications: From BLE to Mesh. USA: IoT for all, M Weed . https://www.154
iotforall.com/bluetooth-iot-applications/ 2018.155

[Haataja et al. ()] Bluetooth Security Attacks: Comparative analysis, attacks and countermeasures, K Haataja ,156
K Hypponen , S Pasanen , P Toivanen . 2013. Finlandia: Springer.157

[Minar and Tarique ()] ‘Bluetooth Security Threats and Solutions: A Survey’. N Minar , M Tarique . Interna-158
tional Journal of Distributed and Parallel Systems 2012. (IJDPS)159

[Mitra ()] ‘Conoce android studio. USA: Developers Android’. A Mitra . https://developer.android.com/160
studio/intro/?hl=es-419 What is Bluestack Attack, 2017. 2019. (The Security Buddy. Recuperado de)161

[Del Cid et al. ()] Alma Del Cid , R Méndez , F Sandoval . Investigación. Fundamentos y metodología, 2011.162

[Nolasco ()] Desarrollo de aplicaciones móviles con Android. Segunda edición. Colombia: Ediciones U, Ra -Ma,163
J Nolasco . 2016.164

[Android ()] Documentation, android.bluetooth. USA: Developers Android, Android . https://developer.165
android.com/reference/android/bluetooth/package-summary 2019.166

[Adn Sureste ()] Este ”error” en el Bluetooth pone en riesgo tu celular, Adn Sureste . https://www.167
adnsureste.info/este-es-error-en-el-bluetooth-pone-en-riesgo-tu-celular-2130-h/168
2019.169

[Carro ()] ‘Esto es lo que puede pasar si tienes el bluetooth del móvil siem-170
pre conectado’. G Carro . https://www.revistagq.com/noticias/articulo/171
bluetooth-movil-siempre-conectado-peligros-hackers Revista GQ. España 2019. (Recuperado172
de)173

[García ()] Hablemos de Spoofing. Hacking Ético, C García . https://hacking-etico.com/2010/08/26/174
hablemos-de-spoofing 2010.175

[Ramos et al. ()] ‘Hacking y seguridad de páginas web’. A Ramos , C Barbero , R Martínez , A García , J176
González . Colombia: Ediciones U 2015.177

[Conkin et al. ()] Principles of Computer Security: CompTIA Security+ and Beyond, A Conkin , G White , C178
Cothren , R Davis , D Williams . 2018. USA: McGraw Hill Professional.179

[Álvarez ()] Se descubre una ”grave vulnerabilidad” en Bluetooth que deja expuestos los180
dispositivos a posibles ataques, R Álvarez . https://www.xataka.com/seguridad/181
se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques182
2017.183

[Ciampa ()] Security+ Guide to Networks Security Fundamentals. Sexta edición, M Ciampa . 2018. Boston, USA:184
Cengage.185

[Occupytheweb ()] The Hacks of Mr. Robot: How to Hack Bluetooth, Occupytheweb . https://null-byte.186
wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/ 2016. Los Angeles, Cali-187
fornia. (Wonder How To. Recuperado de)188

7

https://www.clarin.com/tecnologia/advierten-peligros-utilizar-bluetooth-celular_0__WpofinjL.html
https://www.clarin.com/tecnologia/advierten-peligros-utilizar-bluetooth-celular_0__WpofinjL.html
https://www.clarin.com/tecnologia/advierten-peligros-utilizar-bluetooth-celular_0__WpofinjL.html
https://www.iotforall.com/bluetooth-iot-applications/
https://www.iotforall.com/bluetooth-iot-applications/
https://www.iotforall.com/bluetooth-iot-applications/
https://developer.android.com/studio/intro/?hl=es-419
https://developer.android.com/studio/intro/?hl=es-419
https://developer.android.com/studio/intro/?hl=es-419
https://developer.android.com/reference/android/bluetooth/package-summary
https://developer.android.com/reference/android/bluetooth/package-summary
https://developer.android.com/reference/android/bluetooth/package-summary
https://www.adnsureste.info/este-es-error-en-el-bluetooth-pone-en-riesgo-tu-celular-2130-h/
https://www.adnsureste.info/este-es-error-en-el-bluetooth-pone-en-riesgo-tu-celular-2130-h/
https://www.adnsureste.info/este-es-error-en-el-bluetooth-pone-en-riesgo-tu-celular-2130-h/
https://www.revistagq.com/noticias/articulo/bluetooth-movil-siempre-conectado-peligros-hackers
https://www.revistagq.com/noticias/articulo/bluetooth-movil-siempre-conectado-peligros-hackers
https://www.revistagq.com/noticias/articulo/bluetooth-movil-siempre-conectado-peligros-hackers
https://hacking-etico.com/2010/08/26/hablemos-de-spoofing
https://hacking-etico.com/2010/08/26/hablemos-de-spoofing
https://hacking-etico.com/2010/08/26/hablemos-de-spoofing
https://www.xataka.com/seguridad/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques
https://www.xataka.com/seguridad/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques
https://www.xataka.com/seguridad/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques
https://null-byte.wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/
https://null-byte.wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/
https://null-byte.wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/

	1 Introduction
	2 a) Glossary
	3 Global Journal of Researches in Engineering
	4 II.
	5 Attack Deployment
	6 III.
	7 Design Phase
	8 Development Phase
	9 App development
	10 App features
	11 i. Bluejacking attack results
	12 b) Bluesnarfing attack test i. Deploying attack
	13 ii. Bluesnarfing attack results
	14 VI.
	15 Analysis Results
	16 Conclusions

