
© 2022. Gerardo Alberto Castang Montiel, Fernando Betancourt Duque & Luz Adriana Peña Salazar. This research/review article
is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must
give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable
licensing terms are at https://creativecommons.org/ licenses/by-nc-nd/4.0/.

Global Journal of Researches in Engineering: F
Electrical and Electronics Engineering
Volume 22 Issue 1 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Bluelock a Tool to Prevent Bluetooth Attacks

 By Gerardo Alberto Castang Montiel, Fernando Betancourt Duque
& Luz Adriana Peña Salazar

Universidad Distrital Francisco José de Caldas
Abstract- The mobile device manufacturers and Internet Of Things are searching for more
compatible and easy to connect protocols that increase coverage, which generates the user an
effective experience when using different devices. Nevertheless, the constant updating process
opens a security gap that exposes the users' personal information. Bluetooth is a communication
protocol openly used by manufacturers because of their excellent information transfer capacities,
allowing hackers to exploit it. The manufacturers work daily, generating security patches for
communication protocols but this hasn't been enough to mitigate vulnerabilities. The security has
always been on the manufacturer's side but the final user is limited to use a few security
customization options to protect his network perimeter. Based on the wireless devices'
background we wonder, Is there any way in which the user has the chance to reduce the
possible dangers that wireless devices face? We can answer this question through the
development of a research in the more vulnerable areas, simulating the attacks on a mobile
device to generate a possible solution that allows the user to have more control over his
bluetooth connections.

Keywords: bluetooth, android, security, attacks.

GJRE-F Classification: FOR Code: 290903

BluelockaTooltoPreventBluetoothAttacks

Strictly as per the compliance and regulations of:

Bluelock a Tool to Prevent Bluetooth Attacks
Gerardo Alberto Castang Montiel α, Fernando Betancourt Duque σ & Luz Adriana Peña Salazar ρ

Abstract-

The mobile device manufacturers and Internet Of
Things are searching for more compatible and easy to
connect protocols that increase

coverage, which generates
the user an effective experience when using different devices.
Nevertheless, the constant updating process opens a security
gap that exposes the users' personal information. Bluetooth is
a communication protocol openly used by manufacturers
because of their excellent information transfer capacities,
allowing hackers to exploit it. The manufacturers work daily,
generating security patches for communication protocols but
this hasn't been enough to mitigate vulnerabilities. The security
has always been on the manufacturer's side but the final user
is limited to use a few security customization options to protect
his network perimeter. Based on the wireless devices'
background we wonder, Is there any way in which the user has
the chance to reduce the possible dangers that wireless
devices face? We can answer this question through the
development of a research in the more vulnerable areas,
simulating the attacks on a mobile device to generate a
possible solution that allows the user to have more control
over his bluetooth connections.

Keywords:

bluetooth, android, security, attacks.

I.

Introduction

dvances in wireless communication have faced
compatibility issues, which has forced technology
manufacturers to regulate communication

protocols. One of the most popular has been Bluetooth
used to interconnect mobile devices and IoT
technology. This protocol was created in 1994 by the
electric engineer Jaap Haartsen and it has been
updated throughout the years that has allowed it to be
one the best protocols due to its information transfer
rate.

Because of its popularity, coming from
manufacturers, this has been the target of hackers who
have used vulnerabilities to attack other users and
obtained their private information from their mobile
devices. The response to these attacks is usually
reactive. Such attacks have compromised thousands of
users’ information, even installing apps that act like
malware, that allows access to the peripherals
connected to the victim’s device, like a camera,

mic,
GPS, and others.

Smartphones are the most used devices for
Bluetooth technology due to its features and the storage
capacity in Android. The manufacturers keep reactive
during the attacks, generating patches and updates,
saving the security recommendations.

To generate a preventive solution, we propose
the user is able to manage the Bluetooth interface so it
can be used without exposing private information when
the device is active. To accomplish this, a testing
environment is set up to deploy Bluetooth attacks to
identify possible vulnerabilities that could be reduced by
an Android app for Smartphones.

a) Glossary
Android is a mobile operating system based on

a modified version of the Linux kernel and other open
source software, designed primarily for touchscreen
mobile devices such as smartphones and tablets.
Android is developed by a consortium of developers
known as the Open Handset Alliance and commercially
sponsored by Google.

A

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

13

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Author α: Ingeniero electrónico, Universidad Distrital Francisco José de
Caldas, Colombia. Correo electrónico: gerardocastang@gmail.com
Author σ: Tecnólogo en sistematización de datos, Universidad Distrital
Francisco José de Caldas, Colombia.
Correo electrónico: duquefernandobetancourt@gmail.com
Author ρ: Tecnóloga en sistematización de datos, Universidad Distrital
Francisco José de Caldas, Colombia.
Correo electrónico: luapenas@correo.udistrital.edu.co

 Attacks: In this project an attack is a cyberattack,
and it is the attempt caused by someone who wants
to get control over an informatic system once he
gets access to it.

The attacks have several purposes in order to
cause damage through espionage to get money or to
find vulnerabilities in the system.
 BlueLock: It is the created tool for Android devices

that allows control over the Bluetooth interface by
the user to manage connectivity among active
devices.

 Bluetooth: It is a short-range wireless technology
standard that is used for exchanging data between
fixed and mobile devices over short distances using
UHF radio waves in the ISM bands, from 2.402 GHz
to 2.48 GHz, and building personal area networks
(PANs).

 Kali Linux: Kali Linux (formerly known as BackTrack
Linux) is an open-source, Debian-based Linux
distribution aimed at advanced Penetration Testing
and Security Auditing. Kali Linux contains several
hundred tools targeted towards various information
security tasks, such as Penetration Testing, Security
Research, Computer Forensics and Reverse
Engineering. Kali Linux is a multi platform solution,
accessible and freely available to information
security professionals and hobbyists.

 Pentesting and Ethical hacking: The terms
‘penetration testing’ and ‘ethical hacking’ are often

mailto:gerardocastang@gmail.com�
mailto:duquefernandobetancourt@gmail.com�
mailto:luapenas@correo.udistrital.edu.co�

root@kali:~# service bluetooth start

 root@kali:~# service bluetooth status
 ●

bluetooth.service -

Bluetooth service

 Loaded: loaded (/lib/systemd/system/bluetooth.service; enabled; vendor preset
 Active: active (running) since Sun 2018-11-11 11:35:52 -05; 5h 33min ago

Docs: man:bluetoothd(8)

Main PID: 622 (bluetoothd)

 Status: "Running"

Tasks: 1 (limit: 4915)

 Memory: 4.0M
 CGroup: /system.slice/bluetooth.service

└─622 /usr/lib/bluetooth/bluetoothd

After, we validate the Bluetooth interface (Mac Address)

root@kali:~# hciconfig
hci0: Type: Primary Bus: USB
 BD Address: C8:FF:28:A6:15:F1 ACL MTU: 820:8 SCO MTU: 255:16
 UP RUNNING PSCAN ISCAN
 RX bytes:3857 acl:0 sco:0 events:602 errors:0
 TX bytes:28371 acl:0 sco:0 commands:388 errors:0

We use the Bluelog tool from Kali Linux that allows us to see and register detectable devices on the
Bluetooth network and it is executed as you will find below:

root@kali:~# bluelog

Bluelog (v1.1.2) by MS3FGX

Autodetecting device...OK

Opening output file: bluelog-2018-11-11-1655.log...OK

Writing PID file: /tmp/bluelog.pid...OK

Scan started at [11/11/18 16:55:26] on C8:FF:28:A6:15:F1.

Hit Ctrl+C to end scan.

Blue

Scanner is another Kai Linux tool that allows us to scan through the Bluetooth network adapter,

capturing connectivity features from connected devices on the network and it is executed as follows

root@kali:~# btscanner

Keyword “i” produces and scans all devices on the network and generates a file directory called by the
MAC’s device name with all the information obtained, using these tools we can start to validate the attacks and
check their functionality.

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

14

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

used interchangeably when referring to internal
cyber security tests, but they’re not exactly the
same. Penetration testing is a type of security test in
which an organisation hires a certified professional
to assess the strength of its cyber security
defences. The goal of ethical hacking – like criminal
hacking – is to find security vulnerabilities in an
organisation’s systems. However, as the word
‘ethical’ suggests, the person conducting the attack
must have the organisation’s approval before
proceeding.

 Information security: The state of being protected
against the unauthorized use of information,
especially electronic data, or the measures taken to
achieve this.

 Vulnerability: It is a failure in the security system in
which the user can access a system to manipulate
information, app or take control over the system.

II. Attack Deployment

Knowing the different types of attacks over
Bluetooth, they are possible to duplicate through
Pentesting. The tests done are known as “white box”
(tandem), because we implement the attack
environment using the platform pentesting Kali Linux,
keeping track of every tool and designing the hacking
tests for Bluetooth.

To begin, through Kali Linux we ensure that
Bluetooth is activated using the following commands:

© 2022 Global Journals

 Bluejacking attack: To make this possible, we need to create a contact user, instead of the name, the message
will be written, in the directory folder that will act as the attacker and the contact user is saved. After That, an
area with several mobile devices is found and the option “send via Bluetooth'' is chosen, and it is sent to the
target devices.

 Bluesmack: a line executed directly from the attacker’s console device. which deploys several calls in a specific
frame of time, causing the Bluetooth denial service in the host or hacked device. The script is:

lroot@kali:~# while read r; do l2ping -s 50 84:C7:EA:57:36:D7; done < numscans

we created a file called: numscans with a timer from 1 to n, to be used in the script and avoid memory leaking in the
attacker's device.

root@kali:~# while read r; do l2ping -s 50 84:C7:EA:57:36:D7; done < numscans
Ping: 84:C7:EA:57:36:D7 from C8:FF:28:A6:15:F1 (data size 50) ...
0 bytes from 84:C7:EA:57:36:D7 id 0 time 5.91ms
0 bytes from 84:C7:EA:57:36:D7 id 46 time 63.44ms
Send failed: Connection reset by peer
Ping: 84:C7:EA:57:36:D7 from C8:FF:28:A6:15:F1 (data size 50) …

a) Attack results
We can see the Bluetooth protocol is designed to facilitate device connection, and it is a mandatory

approach for IoT communication devices, so through the software we designed we do not want to limit or block the
protocol’s functionality automatically by a service or app, but we want to give the user this option, designing an app
that allows him to see the connectivity events, paired devices, and allows the user the chance to block any device at
anytime.

III. Design Phase

a) Software structure

Fig. 1: Class Diagram

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

15

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

Fig. 2:

Iteration Diagram

 G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

16

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

The diagram shows the device and the app
running, participating in different communications with
different devices, the device is in a susceptible
environment when it is often attacked via Bluetooth. The
device has a Bluetooth interface that communicates with
the app (Bluelock) that manages the Bluetooth adapter.

The app (BlueLock) has an event filter that
detects specific changes in the Bluetooth adapter, such
as incoming connections, and registering all the
information in a database, and the app log.

IV. Development Phase

App development
As a solution a mobile app for Android is

proposed that allow people to control the Bluetooth
interface communication, turn on and off the Bluetooth
controller, enable finding new devices, consult paired
devices, check the Bluetooth event’s logs, block access
to multiple devices.

App features

1. User’s interface to control the Bluetooth device.

2. Generate bluetooth log events detected by the app.
3. block device interface through Bluetooth interface.

4. Generate a non-relational database that allows
storing information about Bluetooth connected
devices and their related events.

a) Code documentation
Bluetooth filter packages: The main feature

consists in the BroadcastReceiver function, that allows

sending and managing the communication events sent
by the Bluetooth adapter in the Context.sendBroadcast.
This function filters and controls states detected by the
adaptor, does the actions generated by the bluetooth
device and writes the log events.

© 2022 Global Journals

//BroadcastReceiver
private final BroadcastReceiver mBR = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 final String action = intent.getAction();
 String evento = "";
 boolean bloqueo = false;
 final Uri uriData = intent.getData();
 event evt = validaUri(uriData, action);
 eventsDBHelper dbHelper = new eventsDBHelper(getApplicationContext());
 String log = "", showToastLog = "";
 boolean logger;
 if(action.equals(BluetoothAdapter.ACTION_STATE_CHANGED)
 ||action.equals(BluetoothAdapter.ACTION_DISCOVERY_STARTED)
 ||action.equals(BluetoothAdapter.ACTION_DISCOVERY_FINISHED)
 ||action.equals(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED)) {
 final int estado = intent.getIntExtra(BluetoothAdapter.EXTRA_STATE,
BluetoothAdapter.ERROR);
 switch (estado) {
 case BluetoothAdapter.STATE_OFF:
 evento = "BluetoothAdapter.STATE_OFF";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.STATE_ON:
 evento = "BluetoothAdapter.STATE_ON";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.STATE_TURNING_OFF:
 evento = "BluetoothAdapter.STATE_TURNING_OFF";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.STATE_TURNING_ON:
 evento = "BluetoothAdapter.STATE_TURNING_ON";
 log += logAdapter(uriData,evento);
 break;

Fig. 3: Broadcast Receiver Function

Validation of the connection state of the device in the event “connecting”. If the device is blocked, a
remove Band event is generated which eliminates the paired device from the Bluetooth device list, blocking every
attempt from other devices to connect.

case BluetoothAdapter.STATE_CONNECTING:
 evento = "BluetoothAdapter.STATE_CONNECTING";
 log += logAdapter(uriData,evento);
 BluetoothDevice device = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
 bloqueo = validaBloqueo(device.getAddress());
 UUID uuid = UUID.randomUUID();
 if(bloqueo){
 try {
 Log.w("ACTION_ACL_CONNECTED","Entró a removeBond");
 Method m = device.getClass()
 .getMethod("removeBond", (Class[]) null);
 m.invoke(device, (Object[]) null);

 evento = "Dispositivo Bloqueado ("+uuid+"):
"+device.getAddress()+"; "+device.getName();

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

17

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

 log += logAdapter(uriData,evento);
 showToast("Dispositivo bloqueado ("+uuid+") : "+device.getAddress()+" : "+
device.getName());
 } catch (Exception e) {
 Log.w("ACTION_ACL_CONNECTED", e.getMessage());
 evento = "Error de Dispositivo Bloqueado ("+uuid+"):
"+device.getAddress()+"; "+device.getName();
 }
 log += logAdapter(uriData,evento);
 }
 break;

Fig. 4: Event Connecting

We validate the other BluetoothAdapter status. Every event generates a line in the Log events that can be
consulted by the app. It was designed to have styles so when the .txt is rendered, shows with colors the severity of
the case.

case BluetoothAdapter.STATE_CONNECTED:
 evento = "BluetoothAdapter.STATE_CONNECTED";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.STATE_DISCONNECTING:
 evento = "BluetoothAdapter.STATE_DISCONNECTING";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.STATE_DISCONNECTED:
 evento = "BluetoothAdapter.STATE_DISCONNECTED";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE:
 evento = "BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.SCAN_MODE_CONNECTABLE:
 evento = "BluetoothAdapter.SCAN_MODE_CONNECTABLE";
 log += logAdapter(uriData,evento);
 break;
 case BluetoothAdapter.SCAN_MODE_NONE:
 evento = "BluetoothAdapter.SCAN_MODE_NONE";
 log += logAdapter(uriData,evento);
 break;
 default:
 break;
 }
 logger = writeLog(log, "BluetoothAdapter.txt");
 evt.setEventLog(evento);
 dbHelper.saveEvent(evt);
}
if(action.equals(BluetoothAdapter.ACTION_CONNECTION_STATE_CHANGED)) {
 final int estado = intent.getIntExtra(BluetoothAdapter.EXTRA_CONNECTION_STATE, BluetoothAdapter.ERROR);
 evento = "BluetoothAdapter.ACTION_CONNECTION_STATE_CHANGED :" + estado;
 log += logAdapter(uriData, evento);
 evt.setEventLog(evento);
 dbHelper.saveEvent(evt);
 logger = writeLog(log, "BluetoothAdapter.txt");
 showToast(showToastLog);
}

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

18

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

© 2022 Global Journals

if(action.equals(BluetoothAdapter.ERROR)){
 log += String.valueOf(BluetoothAdapter.ERROR);
 evento = "BluetoothAdapter.ERROR";
 log += logAdapter(uriData,evento);
 evt.setEventLog(evento);
 dbHelper.saveEvent(evt);
 showToastLog = "BluetoothAdapter.ERROR";
 logger = writeLog(log, "BluetoothAdapter.txt");
 showToast(showToastLog);
}

Fig. 5: Bluetooth Adapter States

The next state is to validate when finding other available devices within range, so we store the found device
MAC and its NAME. Having the information about unconnected devices, available in the app.

if(action.equals(BluetoothDevice.ACTION_FOUND)){
 BluetoothDevice device = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
 int rssi = intent.getShortExtra(BluetoothDevice.EXTRA_RSSI, Short.MIN_VALUE);
 Log.w("ACTION_ACL_CONNECTED","Entróa
ACTION_ACL_CONNECTED"+device.getName()+"\n"+device.getAddress()+"\n"+rssi);
 device dev = new device();
 dev.setId(0);
 dev.setName(device.getName());
 dev.setAddress(device.getAddress());
 dev.setContentDesc(String.valueOf(rssi));
 dev.setBloqueado(String.valueOf(false));
 dev.setTime(String.valueOf(Calendar.getInstance().getTime()));
 dev.setBonded(String.valueOf(false));
 dev.setHashCode(String.valueOf(device.hashCode()));
 boolean result = guardaDispositivo(dev);
 evento = "BluetoothDevice.ACTION_FOUND";
 log += logAdapter(uriData,evento);
 evt.setEventLog(evento);
 dbHelper.saveEvent(evt);
 logger = writeLog(log, "BluetoothAdapter.txt");
 showToastLog = "BluetoothAdapter.ACTION_FOUND";
 showToast(showToastLog);
}

Fig. 6: Find available devices Function

Then, it validates the connection adapter status, so it validates the blocked devices, if the device is blocked,
we can remove it from the device adapter’s list, in other cases, we create the link between devices to pair them.

if(action.equals(BluetoothDevice.ACTION_ACL_CONNECTED)) {
 Log.d("ACTION_ACL_CONNECTED","Entró a ACTION_ACL_CONNECTED");
 log += logAdapter(uriData,"BluetoothDevice."+BluetoothDevice.EXTRA_NAME+" -
"+BluetoothDevice.ACTION_ACL_CONNECTED);
 evento = "BluetoothDevice.ACTION_ACL_CONNECTED";
 evt.setEventLog(evento);
 BluetoothDevice device = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
 bloqueo = validaBloqueo(device.getAddress());
 UUID uuid = UUID.randomUUID();
 if(bloqueo){
 try {
 Log.w("ACTION_ACL_CONNECTED","Entró a removeBond");
 Method m = device.getClass()
 .getMethod("removeBond", (Class[]) null);
 m.invoke(device, (Object[]) null);

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

19

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

 evento = "Dispositivo Bloqueado ("+uuid+"):
"+device.getAddress()+"; "+device.getName();
 log += logAdapter(uriData,evento);
 showToast("Dispositivo bloqueado ("+uuid+") : "+device.getAddress()+" : "+
device.getName());
 } catch (Exception e) {
 Log.e("ACTION_ACL_CONNECTED", e.getMessage());
 evento = "Error de Dispositivo Bloqueado ("+uuid+"):
 "+device.getAddress()+"; "+device.getName();
 }
 }else{
 try {
 Log.d("ACTION_ACL_CONNECTED", "Start Pairing...");
 Method m = device.getClass()
 .getMethod("createBond", (Class[]) null);
 m.invoke(device, (Object[]) null);
 Log.w("ACTION_ACL_CONNECTED", "Pairing finished.");
 evento = "Dispositivo Conectado ("+uuid+"):
"+device.getAddress()+"; "+device.getName();
 log += logAdapter(uriData,evento);
 } catch (Exception e) {
 Log.w("ACTION_ACL_CONNECTED", e.getMessage());
 evento = "Error Dispositivo Conectado ("+uuid+"): "+device.getAddress()+";
"+device.getName();
 }
 }
 if(action.equals(BluetoothDevice.ACTION_ACL_DISCONNECTED)) {
 log += logAdapter(uriData,"BluetoothDevice."+BluetoothDevice.EXTRA_NAME+" –
"+BluetoothDevice.ACTION_ACL_DISCONNECTED);
 evento = "BluetoothDevice.ACTION_ACL_DISCONNECTED";
 evt.setEventLog(evento);
 dbHelper.saveEvent(evt);
 logger = writeLog(log, "BluetoothAdapter.txt");
 showToastLog = "BluetoothDevice."+BluetoothDevice.EXTRA_NAME+" –
"+BluetoothDevice.ACTION_ACL_DISCONNECTED;
 showToast(showToastLog);
 }
 }
};

Fig. 7: Adapter State Connection Validation function

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

20

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

© 2022 Global Journals

/*

* Valida el estado del dispositivo y actualiza la columna bloqueado

*

*/

public boolean blockDevice(device dev){

 boolean result = false;

 String estado = "bloqueado";

 try {

 String args [] = new String[1];

 args[0] = dev.getAddress();

 Cursor cursor =

this.getDevice(devicesContract.deviceEntry.tableName,null,devicesContract.deviceEntry.address+

"=?",args,null,null,null);

 if (cursor.getCount() > 0){

 cursor.moveToFirst();

 String bloqueado =

cursor.getString(cursor.getColumnIndex(devicesContract.deviceEntry.bloqueado));

 if(bloqueado == null){

 estado = "bloqueado";

 }

 else if(bloqueado.equals("bloqueado")) {

 estado = "desbloqueado";

 }

 }else{

 Log.e("deviceDBHelper", "Error bloqueando Dispositivo no

emparejado:"+dev.getAddress());

 }

 ContentValues cv = new ContentValues();

 cv.put(devicesContract.deviceEntry.bloqueado, estado);

 SQLiteDatabase db = getWritableDatabase();

 db.update(devicesContract.deviceEntry.tableName, cv,

devicesContract.deviceEntry.address + "='" +

dev.getAddress()+"'", null);

 result = true;

 }catch (Exception e){

 Log.e("deviceDBHelper", "Error bloqueando Dispositivo: " + e.toString());

 }

 return result;

}

Fig.

8:

Block

Device Function

V.

Testing Phase

a)

Bluejacking attack phase

Attack deploy: To start we use the app BlueLock in the target device 2 with MAC A0:8D:16:88:A5:BD and
block all the devices that have bluetooth activated. Then, we create a new contact in the attacker device 1 with MAC
MAC C0:8C:71:84:94:A1 and it is sent or shared to the target device.

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

21

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

b) Device blocking
The state the device is found, is extremely important for the app. Therefore, if the app finds a device and this

is active, when establishing a connection, it can be blocked to avoid negative actions to our device from this
unwanted device. The following method blockDevice validates the state from this device and updates the blocked
column from the Devices chart.

Fig. 9: Bluejacking Attack -Error message on contact transfer.

i. Bluejacking attack results
After executing the test, we can see the app blocks the contact sent, blocking all the communication

channels between those devices.

b) Bluesnarfing attack test
i. Deploying attack

This attack is similar to the previous one, but it enters and steals information from the attacked device. We
execute the same previous commands and we get the results shown in the console.

root@kali:~# sdptool browse --tree --l2cap C0:8C:71:84:94:A1
Failed to connect to SDP server on C0:8C:71:84:94:A1: Connection timed out
root@kali:~# sdptool browse --tree --l2cap C0:8C:71:84:94:A1
Failed to connect to SDP server on C0:8C:71:84:94:A1: Operation already in progress
root@kali:~# sdptool browse --tree --l2cap C0:8C:71:84:94:A1
Failed to connect to SDP server on C0:8C:71:84:94:A1: Connection timed out
root@kali:~#

ii. Bluesnarfing attack results
The attacked device avoids the description

services reading and keeps inaccessible to the attacker
device.

VI. Analysis Results

When we deployed the attacks and used the
app Bluelock, we got a positive result due to the
effectiveness when blocking attacker devices trying to
deploy their attacks. In the bluejacking, it does not allow
incoming notifications from the corrupted contact, and
in the Bluesnarfing it was completely stopped since the
device tried to start communication.

The app, through the blocking device
functionality, offers better security and control of the
device Bluetooth connections, because it allows the
user to choose the devices that will be able to establish
a connection and keep track of the bluetooth
connections events. After testing the file transfer and
Bluetooth attacks we see in the app the functionality
filter for the bluetooth adapter states works as expected,
so its functionalities could be expanded, defining
protocols for every single state of the Bluetooth adapter,
increasing the app’s usability and security to protect our
information from Bluetooth attacks.

The log registration allows us to access the
Bluetooth adapter communication events in a short time
range and to detect unusual events that take place in
the Bluetooth interface range.

The functionality of the app consists in the
device’s bluetooth adapter control. In case the interface
does not respond, it will need to be reseted to get
control again, this action can be done by BlueLock.

An app that allows us to see the Bluetooth
interface actions is not easily found, because they
happen under a transparent communication cape for
the user. So with the app BlueLock we can offer a better
control of the use that bluetooth connections represent
and the events at the moment of establishing
connections.

V. Conclusions

The synergy between hacking and the bluetooth
attacks, along with software development, allows them
to complement each other, facilitating the design,
development, testing and deploying of software
solutions that improve security in device communication
interface, and allow the implementation of closed mobile
communication systems.

Most Bluetooth attacks are done while the
device’s interface is active, due to the protocol working
as a receptor waiting for incoming communications and
in that state attacks like Bluesnarfing can take place and
steal information, taking advantage of the human factor
to reach closeness of the target device.

Software solutions for mobile devices focused
on connection validation and data packages can
improve Android devices’ security in places like

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

22

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

© 2022 Global Journals

apartment buildings where there are a lot of mobile
devices active and we have a higher chance to be
hacked in such environments. BlueLock is a security
app oriented to connectivity events that allows unwanted
device detection and offers the chance to block them at
any time. This is possible by validating the Bluetooth
interface state through Intent filters, that is sensible to
the Bluetooth adapter changes.

The robustness of the testing set for BlueLock
solution, has given positive security results that allow us
to block BLuejacking or Bluesnarfing attacks coming
from previously blocked devices. In conclusion, we are
allowing the user to be responsible for managing the
device he allows or not to connect.

References Références Referencias

1. Ramos, A., Barbero, C., Martínez, R., García, A. y
González, J. (2015). Hacking y seguridad de
páginas web. Colombia: Ediciones U, Ra – Ma.

2.

Nolasco, J. (2016). Desarrollo de aplicaciones
móviles con Android. Segunda edición. Colombia:
Ediciones U, Ra –

Ma.

3.

Ciampa, M. (2018). Security+ Guide to Networks
Security Fundamentals. Sexta edición. Boston, USA:
Cengage.

4.

Haataja. K., Hypponen, K. Pasanen, S. y Toivanen,
P. (2013). Bluetooth Security Attacks: Comparative

analysis, attacks and countermeasures. Finlandia:
Springer.

5.

Conkin, A., White G., Cothren, C., Davis, R., y
Williams, D., (2018). Principles of Computer Security:
CompTIA Security+ and Beyond. USA: McGraw Hill
Professional.

6.

Minar, N. y Tarique, M. (2012).

Bluetooth Security

Threats and Solutions: A Survey. International
Journal of Distributed and Parallel Systems (IJDPS).
3(1). Recuperado de https://www.researchgate.net/
publication/267200901_Bluetooth_Security_Threats
_And_Solutions_A_Survey

7.

Weed, M. (2018). Bluetooth IoT Applications: From
BLE to Mesh. USA: IoT for all. Recuperado de
https://www.iotforall.com/bluetooth-iot-applications/

8.

García, C. (2010). Hablemos de Spoofing. Hacking
Ético. Recuperado de https://hacking-etico.com/
2010/08/26/hablemos-de-spoofing/

9.

OCCUPYTHEWEB. (2016). The Hacks of Mr. Robot:
How to Hack Bluetooth. Los Angeles, California:
Wonder How To. Recuperado de https://null-
byte.wonderhowto.com/how-to/hacks-mr-robot-
hack-bluetooth-0163586/

10.

Mitra, A. (2017). What is Bluestack Attack?. The
Security Buddy. Recuperado de https://www.the
securitybuddy.com/bluetooth-security/what-is-blue
smack-attack/2/

11. Android. (2019). Conoce android studio. USA:
Developers Android. Recuperado de https://
developer.android.com/studio/intro/?hl=es-419

12. Android. (2019). Documentation, android.bluetooth.
USA: Developers Android. Recuperado de
https://developer.android.com/reference/android/bl
uetooth/package-summary.

13. Alma del Cid, Méndez R. y Sandoval F. (2011).
Investigación. Fundamentos y metodología.
Segunda edición. México: Pearson.

14. ADN Sureste. (2019). Este “error” en el Bluetooth
pone en riesgo tu celular. México. Recuperado de
https://www.adnsureste.info/este-es-error-en-el-
bluetooth-pone-en-riesgo-tu-celular-2130-h/.

15. Clarín. (2019). Advierten sobre los peligros de
utilizar el Bluetooth de tu celular. Buenos Aires,
Argentina. Recuperado de https://www.clarin.com
/tecnologia/advierten-peligros-utilizar-bluetooth-
celular_0__WpofinjL.html.

16. Álvarez, R. (2017). Se descubre una “grave
vulnerabilidad” en Bluetooth que deja expuestos los
dispositivos a posibles ataques. España.
Recuperado de https://www.xataka.com/seguridad
/se-descubre-grave-vulnerabilidad-bluetooth-que-
deja-expuestos-dispositivos-a-posibles-ataques.

17. Carro, G. (2019). Esto es lo que puede pasar si
tienes el bluetooth del móvil siempre conectado.
Revista GQ. España. Recuperado de https://
www.revistagq.com/noticias/articulo/bluetooth-
movil-siempre-conectado-peligros-hackers.

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

(

)
F

1

Ye
a r

20
22

23

V
ol
um

e
X
X
II
 I
ss
ue

 e

rs
io
n

I

V
I

Bluelock a Tool to Prevent Bluetooth Attacks

https://null-byte.wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/�
https://null-byte.wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/�
https://null-byte.wonderhowto.com/how-to/hacks-mr-robot-hack-bluetooth-0163586/�
https://www.adnsureste.info/este-es-error-en-el-bluetooth-pone-en-riesgo-tu-celular-2130-h/�
https://www.adnsureste.info/este-es-error-en-el-bluetooth-pone-en-riesgo-tu-celular-2130-h/�
https://www.xataka.com/seguridad%20/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques�
https://www.xataka.com/seguridad%20/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques�
https://www.xataka.com/seguridad%20/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques�
https://www.xataka.com/seguridad%20/se-descubre-grave-vulnerabilidad-bluetooth-que-deja-expuestos-dispositivos-a-posibles-ataques�

	Bluelock a Tool to Prevent Bluetooth Attacks
	Author
	Keywords
	I. Introduction
	a) Glossary

	II. Attack Deployment
	a) Attack results

	III. Design Phase
	a) Software structure

	IV. Development Phase
	a) Code documentation
	b) Device blocking

	V.Testing Phase
	a)Bluejacking attack phase
	b) Bluesnarfing attack test

	VI. Analysis Results
	V. Conclusions
	References Références Referencias

