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Abstract7

The delay less SAF scheme in an ANC system involves the decomposition of input noise (i.e.,8

the reference signal) and error signals into sub bands using analysis filter banks, and9

combining the sub band weights into a full-band noise canceling filter by a synthesis filter10

bank called weight stacking. Typically, a linear-phase finite-impulse response (FIR) low-pass11

filter (i.e., prototype filter) is designed and modulated for the design of such filter banks. The12

filter must be designed so that the side-lobe effect and spectral leakage are minimized. The13

delay in filter bank is reduced by prototype filter design and the side-lobe distortion is14

compensated for by oversampling and appropriate stacking of sub band weights. Experimental15

results show the improvement of performance and computational complexity of the proposed16

method in comparison to two commonly used sub band and block adaptive filtering17

algorithms. Sub band adaptive filtering (SAF) techniques play a prominent role in designing18

active noise control (ANC) systems. They reduce the computational complexity of ANC19

algorithms, particularly, when the acoustic noise is a broadband signal and the system models20

have long impulse responses. In the commonly used uniform-discrete Fourier transform (DFT)21

-modulated (UDFTM) filter banks, increasing the number of sub bands decreases the22

computational burden but can introduce excessive distortion, degrading performance of the23

ANC system. In this paper, we propose a new UDFTM-based adaptive sub band filtering24

method that alleviates the degrading effects of the delay and side-lobe distortion introduced25

by the prototype filter on the system performance26

27

Index terms— DFT, dolph- linear-phase finite-impulse response, sub band adaptive filtering, SAF, UDFM.28

1 Introduction29

ubband adaptive filtering (SAF) techniques play a prominent role in designing active noise control (ANC)30
systems. They reduce the computational complexity of ANC algorithms, particularly, when the acoustic noise is31
a broadband signal and the system models have long impulse responses. Active noise control (ANC) is a method32
of canceling a noise signal in an acoustic cavity by generating an appropriate antinoise signal via canceling33
loudspeakers.34

In general, the SAF methods offer a good alternative approach to meet ANC system requirements, due to their35
inherent spectral decomposition and down sampling operations. Since the spectral dynamic range and eigen value36
spread of the covariance matrix of noise signal decrease in each sub band, the performance, i.e., convergence rate,37
noise attenuation level, and stability of the ANC system, improves using SAF techniques. Hence, one expects38
that increasing the number of sub bands (or block length) M should improve the performance.39

The delay less SAF scheme in an ANC system involves the decomposition of input noise (i.e., the reference40
signal) and error signals into sub bands using analysis filter banks, and combining the sub band weights into41
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3 GENERIC INVERTIBILITY OF MULTIDIMENSIONAL FIR MULTIRATE

a full-band noise canceling filter by a synthesis filter bank called weight stacking. Typically, a linear-phase42
finite-impulse response (FIR) low-pass filter (i.e., prototype filter) is designed and modulated for the design of43
such filter banks. The filter must be designed so that the side-lobe effect and spectral leakage are minimized.44
The latter requires a high-order FIR filter, introducing a long delay, which increases with M as the bandwidth45
shrinks. The long delay and side-lobe interference introduced by the prototype filter degrade the performance of46
SAF algorithms for large M, limiting the computational saving that can be obtained by increasing the number47
of sub bands. Improving the system performance and reducing the computational burden by increasing M has48
inspired the work presented herein. The focus of this project is to design a highperformance SAF algorithm. The49
performance limiting factors of existing SAF structures were found to be due to the inherent delay and side-lobes50
of the prototype filter in the analysis filter banks.51

A delay less structure targeted for low-resource implementation is proposed to eliminate filter bank processing52
delays in sub band adaptive filters (SAFs). Rather than using direct IFFT or poly phase filter banks to transform53
the SAFs back into the time-domain, the proposed method utilizes a weighted overlap-add (WOLA) synthesis.54
Low-resource real-time implementations are targeted and as such do not involve long (as long as the echo55
plant) FFT or IFFT operations. Also, the proposed approach facilitates time distribution of the adaptive filter56
reconstruction calculations crucial for efficient real-time and hardware oversampled WOLA filter bank employed57
as part of an echo cancellation application. Evaluation results demonstrate that the proposed implementation58
outperforms conventional SAF systems since the signals used in actual adaptive filtering are not distorted by59
filter bank aliasing. The method is a good match for partial update adaptive algorithms since segments of the60
timedomain adaptive filter are sequentially reconstructed and updated.61

A delay less method for adaptive filtering through SAF systems is proposed. The method, based on WOLA62
synthesis of the SAFs, is very efficient and is well mapped to a low-resource hardware implementation. The63
performance of an open-loop version of the system was compared against a conventional SAF system employing64
the same WOLA analysis/synthesis filter banks, with the proposed delay less system offering superior performance65
but at greater computational cost. The performance is identical to the DFT-FIR delay less SAF system that66
employs straightforward poly phase filter banks.67

However, the proposed WOLA-based TAF synthesis offers a superior mapping to low-resource hardware with68
limited-precision arithmetic. Also the WOLA adaptive filter reconstruction may easily be spread out in time69
simplifying the necessary hardware. This time-spreading may be easily combined with partial update adaptive70
algorithms to reduce the computation cost for low-resource real time platforms.71

2 II.72

3 Generic Invertibility of Multidimensional Fir Multirate73

Systems and Filter Banks74
We study the inevitability of M-variety polynomial (respectively: Laurent polynomial) matrices of size N by75

P. Such matrices represent multidimensional systems in various settings including filter banks, multiple-input76
multiple-output systems, and MultiMate systems. The main result of this paper is to prove that when N ? P77
? M, then H(z) is generically invertible; whereas when N ? P < M, then H(z) is generically noninvertible. As78
a result, we can have an alternative approach in design of the multidimensional systems. During the last two79
decades, one dimensional multiage systems in digital signal processing were thoroughly developed. In recent80
years, due to the high demand in multidimensional processing including image and video processing, volumetric81
data analysis and spectroscopic imaging, multidimensional multirate systems have been studied more extensively.82

One key property of a multidimensional multirate system is its perfect reconstruction, which guarantees that an83
original input can be perfectly reconstructed from the outputs. We show that there is a sharp phase transition on84
the invariability depending on the size and dimension of a given Laurent polynomial matrix. Specifically when N85
? P ? M, the N ×P polynomial (resp. : Laurent polynomial) of M-variety matrix is generically invertible; whereas86
when N ? P < M, the matrix is generically noninvertible. Using this sharp phase transition property, we develop87
a fast algorithm to compute a particular left inverse for a given Laurent polynomial matrix. These results suggest88
an alternative approach in designing multidimensional filter banks by freely generating filters for the analysis89
side first. If we allow an amount of over sampling then we can almost surely find a perfect reconstruction inverse90
for the synthesis poly phase matrix. These results also have potential applications in multidimensional signal91
reconstruction from multi-channel filtering and sampling. Speech signals from the uncontrolled environments92
may contain degradation components along with the required speech components. The degradation components93
include background noise, reverberation and speech from other speakers. The degraded speech gives poor94
performance in automatic speech processing tasks like speech recognition and speaker recognition and is also95
uncomfortable for human listening [1]. The degraded speech therefore needs to be processed for the enhancement96
of speech components. Several methods have been proposed in the literature for this purpose, majority them97
can be grouped into spectral processing and temporal processing methods. In spectral processing methods, the98
degraded speech is processed in the transform domain, where as, in temporal processing methods, the processing99
is done in the time domain, for enhancing the speech components. Each of them has their own merits and100
demerits. These two approaches may be effectively combined by exploiting their merits and aiming to minimize101
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the demerits. This may lead to speech enhancement methods which are more effective and robust compared to102
only spectral or temporal processing.103

Frequency-domain and sub band implementations improve the computational efficiency and the convergence104
rate of adaptive schemes. The well-known multi delay adaptive filter (MDF) belongs to this class of block105
adaptive structures and is a DFT-based algorithm. In this paper, we develop adaptive structures that are based106
on the trigonometric transforms DCT and DST and on the discrete Hartley transform (DHT). As a result, these107
structures involve only real arithmetic and are attractive alternatives in cases where the traditional DFTbased108
scheme exhibits poor performance. The filters are derived by first presenting a derivation for the classical DFT-109
based filter that allows us to pursue these extensions immediately. The approach used in this paper also provides110
further insights into sub band adaptive filtering.111

4 III.112

5 The Implementation of Delay Less Sub Band Active Noise113

Control Algorithms114

Wideband active noise control systems usually have hundreds of taps for control filters and the cancellation path115
models, which results in high computational complexity and low convergence speed. Several active noise control116
algorithms based on sub band adaptive filtering have been developed to reduce the computational complexity117
and to increase the convergence speed. The sub band structure is similar to the frequency domain structure but118
differs in the time domain processing of the sub band signals. This paper discusses several issues associated with119
implementing the delay less sub band active noise control algorithms on a DSP Platform, such as the modeling120
of the cancellation path in sub bands and the partial Update of different sub bands.121

Single channel ANC systems often use sub band techniques to overcome the difficulties of high computational122
complexity and low convergence speed associated with a wideband control filter containing thousands of taps.123
This paper will discuss various method of noise reduction for wireless communication network. Noise is an,124
unwanted and inevitable interference, in any form of communication. It is non-informative and plays the role125
of sucking the intelligence of the original signal. Any kind of processing of the signal contributes to the noise126
addition. A signal traveling through the channel also gathers lots of noise. It degrades the quality of the127
information signal. The effect of noise could be reduced only at the cost of the bandwidth of the channel, which128
is again undesired, as bandwidth is a precious resource. Hence to regenerate original signal, it is tried to reduce129
the power of the noise signal, or in the other way, raise the power level of the Informative signal, at the receiver130
end this leads to improvement in the signal to noise ratio(SNR).131

Adaptive algorithms that allow neighboring nodes to communicate with each other at every iteration. At each132
node, estimates exchanged with neighboring nodes are fused and promptly fed into the local adaptation rules. In133
this way, an adaptive network is obtained where the structure as a whole is able to respond in real-time to the134
temporal and spatial variations in the statistical pro file of the data. Different adaptation or learning rules at135
the nodes, allied with different cooperation protocols, give rise to adaptive networks of various complexities and136
potential. Obviously, the effectiveness of any distributed implementation depends on the modes of cooperation137
that are allowed among the nodes. Figure ?? illustrates three such modes of cooperation. In an incremental138
mode of cooperation information flows in sequential manner from one node to the adjacent node. This mode of139
operation requires a cyclic pattern of collaboration among the nodes, and has the advantage that for the last140
node in the cycle, the data from the entire network are used to update the desired parameter estimate, thereby141
offering excellent estimation performance.142

Moreover, for every measurement, every node needs to communicate with only one neighbor. However,143
incremental cooperation has the disadvantage of requiring the definition of a cycle, and network processing has144
to be faster than the measurement process, since a full communication cycle is needed for every measurement.145
This may become prohibitive for large networks. Incremental networks are also less robust to node and link146
failures. An alternative protocol is the diffusion implementation where every node communicates with all of its147
neighbors as dictated by the network topology. This approach has no topology constraints and is more robust to148
node and link failure. It will have some performance degradation compared to an incremental solution, and also149
every node will need to communicate with its neighbors for every measurement, possibly requiring more energy150
than the incremental case.151

The mainstay of the proposed model is improving the system performance and reducing the computational152
burden. In this paper, we first demonstrate that the increased delay degrades the system performance more than153
that of the spectral leakage (or side-lobe effects) in a uniform sub-band filtering method. It is shown how the154
spectral leakage can be reduced by choosing a proper decimation factor and weight stacking methodology. We155
then present a new SAF (Sub-Band Adaptive Filtering) algorithm that reduces computational complexity by156
increasing the number of subbands M without degrading the performance of the ANC (Active Noise Control)157
system. The performance of the proposed method is compared with those of MT (Moragan and Thi) and158
DFT-MDF (Discrete Fourier Transform and Multi-Delay Adaptive Filter) methods. The results show that the159
maximum noise attenuation level (NAL) of the proposed method is higher than that of MT and comparable160
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11 ACTIVE NOISE CONTROL SYSTEM

to that of the DFT-MDF method. However, the new method achieves the maximum NAL with much lower161
computational complexity and higher robustness than the other two methods.162

IV.163

6 Methodology164

The gradient based adaptation starts with an old optimization technique known as the method of steepest165
descent. This has been discussed in the next chapter in detail. It is recursive in the sense that starting from some166
initial arbitrary value for tap weight vector, it improves with increasing number of iterations. The final value so167
computed for tap weight vector converges to Year 2014 Wiener solution. The fixed step size least mean square168
(FSS LMS) algorithm is an important member of the family of stochastic gradient algorithms. The term stochastic169
gradient is intended to distinguish it from the method of steepest descent that uses deterministic gradient in a170
recursive computation of the Wiener filter for stochastic inputs. This algorithm does not require measurements of171
the pertinent correlation functions, nor does it require matrix inversion. Subsequent works have discussed issue172
of optimization of step size or methods of varying step size to improve performance. There are different types of173
adaptive filtering algorithms, they are 1. Least mean square (LMS) algorithm. One of the primary disadvantages174
of the LMS algorithm is having a fixed step size parameter for every iteration. This requires an understanding of175
the statistics of the input signal prior to commencing the adaptive filtering operation. In practice this is rarely176
achievable. Even if we assume the only signal to be input to the adaptive echo cancellation system is speech,177
there are still many factors such as signal input power and amplitude which will affect its performance.178

The normalized least mean square algorithm (NLMS) is an extension of the LMS algorithm which bypasses179
this issue by selecting a different step size value, ?(n), for each iteration of the algorithm. This step size is180
proportional to the inverse of the total expected energy of the instantaneous values of the coefficients of the input181
vector x(n). This sum of the expected energies of the input samples is also equivalent to the dot product of the182
input vector with itself, and the trace of input vectors auto-correlation matrix, R.????(??) = ? ??[?? 2 (?? ? ??)183
???1 ??=0 ] = ??[? ?? 2 (?? ? ??)] ???1 ??=0184

The recursion formula for the NLMS algorithm is stated in equation.w(n+1)=w(n)+ 1 ?? ?? (??)??(??)185

7 ??(??)??(??) b) Derivation of the NLMS algorithm186

To derive the NLMS algorithm consider the standard LMS recursion, for which we select a variable step size187
parameter, ?(n). This parameter is selected so that the error value, e + (n), will be minimized using the updated188
filter tap weights, w(n+1), and the current input vector, x(n).w(n+1) = w(n) + 2?(n)e(n)x(n), e + (n) = d(n)189
-w T (n+1)x(n) , =(1-2?(n)x T (n)x(n))e(n)190

Next we minimize (e + (n)) 2, with respect to ?(n). Using this we can then find a value for ?(n) which forces191
e + (n) to zero.µ(n) = 1 2?? ?? (??)??(??)192

This ?(n) is then substituted into the standard LMS recursion replacing ?, resulting in the following NLMS193
equation.w(n+1) = w(n) + 2?(n)e(n)x(n) , w(n+1)=w(n)+ 1 ?? ?? (??)??(??)194

8 ??(??)??(??) c) Implementation of the NLMS algorithm195

The NLMS algorithm has been implemented in Matlab and in a real time application using the Texas Instruments196
TMS320C6711 Development Kit. As the step size parameter is chosen based on the current input values,197
the NLMS algorithm shows far greater stability with unknown signals. This combined with good convergence198
speed and relative computational simplicity makes the NLMS algorithm ideal for the real time adaptive echo199
cancellation system. As the NLMS is an extension of the standard LMS algorithm, the NLMS algorithms practical200
implementation is very similar to that of the LMS algorithm. Each iteration of the NLMS algorithm requires201
these steps in the following order (a) The output of the adaptive filter is calculated.y(n) = ? ??(??)????? ? ???202
= ?? ?? (??)??(??) ???1 ??=0203

An error signal is calculated as the difference between the desired signal and the filter output204

9 e(n)=d(n)-y(n)205

The step size value for the input vector is calculated.µ(n) = 1 2?? ?? (??)??(??)206
The filter tap weights are updated in preparation for the next iteration.207

10 w(n +1) = w(n) +?(n)e(n)x(n)208

Each iteration of the NLMS algorithm requires 3N+1 multiplications, this is only N more than the standard LMS209
algorithm, this is an acceptable increase considering the gains in stability and echo attenuation achieved.210

V.211

11 Active Noise Control System212

Active noise control (ANC) is a method of canceling a noise signal in an acoustic cavity by generating an213
appropriate anti-noise signal via canceling loudspeakers. Due to recent advances in wireless technology, new214
applications of ANC have Year 2014(b) (c) (d)215
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emerged, e.g., incorporating ANC in cell phones, Bluetooth headphones, and MP3 players, to mitigate the216
environmental acoustic noise and therefore improve the speech and music quality. For practical purposes, ANC as217
a real-time adaptive signal processing method should meet the following requirements: 1) minimum computational218
complexity (lower computational delay and power consumption), 2) stability and robustness to input noise219
dynamics, and 3) maximum noise attenuation.220

Acoustical noise can sometimes disturb or even harm nearby people. Hence, it is necessary to find ways to221
reduce such unwanted noise. Traditionally, passive means (i.e., physical barriers) to attenuate the noises have been222
employed. Unfortunately, the barriers are not effective to isolate lower frequency noises; and to achieve significant223
reduction the barriers have to be rather bulky. In effect, the passive barrier is not a costeffective solution to224
reducing low-frequency noises (for example, noises that come from industrial blowers, diesel engines, transformers,225
earth-moving machines, and propeller-driven aircraft.) Because of that shortcoming of the physical barriers, active226
means to reduce low frequency noise (less than 500-1000 Hertz) have been investigated by researchers in the field227
of adaptive acoustic control. Active noise control (ANC) promises a good reduction of the noises in the form of228
a small package of a DSP controller, microphone(s), and loudspeaker(s). For the better or the worse, the ANC229
systems are effective only when the intended noise is periodic, and so random noises like the white noise will not230
be reduced.231

There are different ANC schemes that have been developed. My project is involved with the implementation232
of one of the schemes that is called single-channel adaptive feedback ANC. The implementation was on a Texas233
Instruments TMS320C54 evaluation module (EVM) board; in addition to this, I used a microphone and a234
loudspeaker. Two types of noise exist in the environment, broadband noise, where its energy is more or less235
evenly distributed across the frequency spectrum, or narrowband noise, where the energy is mostly concentrated236
around specific frequencies. In ANC roughly two types of control strategies can be distinguished as shown by237
Fuller, their use strongly depends on the deterministic behavior of the disturbance: Feedback ANC: A controller238
is used to modificate the response of a system, for example by adding artificial damping. In this way vibration239
levels can be reduced even for a broadband random disturbance.240

Feedforward ANC: When the disturbance is deterministic, or in particular harmonic, a controller can be used241
to adaptively calculate a signal that cancels the disturbance. When vibrations are induced by rotating machinery242
this often results in harmonicvibrations and the amount of noise reduction achieved by feedforward ANC systems243
is far superior to that of feedback ANC systems as shown by Hansen & Snyder. The basic idea of feedforward ANC244
is to generate a signal (secondary noise), that is equal to a disturbance signal (primary noise) in amplitude and245
frequency, but has opposite phase. Combination of these signals results in cancellation of the primary (unwanted)246
noise. This ANC technique is well-known for its use in cancelling unwanted sound as shown by Nelson & Elliott247
[6], but it is used for the control of vibration. A block diagram of an adaptive digital filter is shown in fig. ??.1,248
where n is a time index. This filter forms the basis for feedforward ANC, based on the FXLMS algorithm. The249
adaptive filter actually consists of two parts. The digital filter, W(z) calculates its output by using a reference250
x(n) and adjustable filter coefficients, or weights. The filter coefficients are updated by an adaptive algorithm,251
using x(n) and an error signal e(n) in such a way that the squared error e 2 (n) is minimized. where d(n) is an252
unwanted disturbance. The adaptive filter will try to calculate an output y(n) that is equal to the unwanted253
disturbance d(n), so this disturbance will be cancelled.254

12 a) Concept of an ANC system255

The basic concept of the feedforward ANC system that is used with the experimental setup can be found in Figure256
??.2, where the grey part represents the controller and the white part represents the physical world. This is a257
very general concept, in this report vibrations are considered, but it can also be applied to acoustic applications258
as shown by Nelson and Elliott [6] or more specific to sound cancellation in ducts as shown by Kuo and Morgan259
[5].260

13 b) System Description261

The harmonic noise is produced at the noise source (e.g. an engine or a shaker).262
Through the transfer function P(z) of the primary path this results in a vibration d(n) somewhere in the263

construction. This vibration will be reduced, by generating the appropriate controller output y(n) and sending264
it trough the transfer function S(z) of the Secondary Path to the construction. The remaining vibration e(n)265
can then be measured by a sensor. The adaptive filter looks similar to that of Figure ??.1 but is slightly more266
complicated. That is to compensate for the effects of the Secondary Path, which will be explained later.267

14 c) Conventional versus Indirect Feedforward ANC268

In conventional feedforward ANC systems, the disturbance frequency information is available or can be derived269
from the noise source, for example from the engine velocity. When the disturbance frequency is exactly known,270
the reduction that can be achieved by a conventional feedforward ANC system has its limit at infinity for the271
ideal case with a pure harmonic noise-free disturbance and linear Secondary Path. In other applications the272
disturbance frequency information may not be available, because the disturbance frequencies are unknown or273
slowly varying. In that case indirect feedforward ANC can be used as shown in this report, where the reference274
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15 C) MEAN SQUARE ERROR CRITERION

signal x(n) is generated from the error e(n), instead of from the frequency information of the noise source.275
Conventional feedforward ANC with a single frequency disturbance was imple-mented on the experimental setup276
by H.J. van der Veen. This report focuses on different kinds of indirect feedforward ANC methods, where if277
possible harmonic disturbances with two frequencies are used. They are tested at the experimental setup and278
will be compared with each other. In practical applications there is a transfer function S(z) between the digital279
controller signal and the physical world, which contains the D/A converter, power amplifier, actuator element280
and construction. In general, this Secondary Path transfer function S(z) gives a change in amplitude and a phase281
shift, so the adaptive filter should compensate for the effects of S(z) to ensure convergence. A straightforward282
solution would be to place the inverse S(z) -1 in series with S(z), but because this inverse does not necessarily283
exists, the socalled Filtered-x LMS (FXLMS) algorithm is more generally used. This algorithm places an estimate284
of S(z) in the reference signal to the weight update.285

For the ANC system of Figure ??.2, containing a Secondary Path transfer function S(z), the residual error can286
be expressed as: e(n)=d(n)-y‘(n);287

(5.2)288
where y‘(n) is the output of the Secondary Path S(z). If S(z) is assumed as an IIR filter with denominator289

coefficients [a 1 ,???,a N ] and numerator coefficients [b 0 ,??.b M-1 ], then the filter output y‘(n) can be written290
as the sum of the filter input y(n) and the past filter output:291

(5.3) It can be achieved in a similar way that the gradient estimate becomes:292
(5.4) where:293
(5.5) Note that in practical applications, S(z) is not exactly known, therefore the parameters a i and b j are294

the parameters of the Secondary Path Estimate S^(z). The weight update equation of the FXLMS algorithm295
is:w(n + 1) = w(n) + µx‘(n)e(n)296

(5.6) and x‘(n) can be calculated from Equation ??.5.297
The FXLMS algorithm is very tolerant to modelling errors in the Secondary Path Estimate S^(z) as shown298

by Kuo & Morgan [5]. The algorithm will converge when the phase error between S(z) and S^(z) is smaller than299
90 0 . Convergence will be slowed down though, when the phase error increases.300

From the weight update Equation 2.6 can be seen that a step size µ has to be chosen. This step size affects301
important properties such as performance, stability and error after convergence. A more in-depth analysis can302
be found in Kuo & Morgan [5] and Elliott & Nelson. Furthermore, a modification of the standard FXLMS is303
presented to make the choice of µ independent of the power of x‘(n). Adaptive systems adapt to the environment304
changes and search for the optimal system parameters based on a reference signal. In the case of a filter, the305
system parameters are the tap weights of the filter. The performance of an adaptive algorithm is highly dependent306
on the reference input and additive noise statistics. In the context of Wiener filter theory, there are assumptions307
of time invariance, linearity and Gaussian statistics such that the mean square error criteria will be the optimum308
cost function. These assumptions are often for the ease of mathematical analysis, but do not take into account309
of the broader problems of signals with non-Gaussian statistics. In the digital communication systems, efficient310
bandwidth utilization is economically important to maximizing profits, while at the same time maintaining311
performance and reliability. More importantly, the adaptive filter solution has to be relatively simple, which312
often leads to the use of the conventional Least Mean Square (LMS) algorithm. However, the performance of the313
LMS algorithm is often sub-optimal and the convergence rate is small. This, therefore, provides the motivation314
to explore and study variable step size LMS adaptive algorithms for various applications.315

b) The Wiener Filter These are a class of linear optimum discrete time filters known collectively as Wiener316
filters. Wiener filters are a special class of transversal Finite impulse response (FIR) filters that build upon the317
Mean Square Error (MSE) cost function to arrive at an optimal filter tap weight vector, which reduces the MSE318
signal to a minimum. Theory for a Wiener filter is formulated for general case of complex valued time series with319
filter specified in terms of its impulse response because baseband signal appears in complex form under many320
practical situations.321

15 c) Mean Square Error Criterion322

The linear filter with the aim of estimating the desired signal d(n) from input x(n). Assume that d(n) and323
x(n) are samples of infinite length, random processes illustrates in Fig 3 ??1 . In ’optimum filter design’, signal324
and noise are viewed as stochastic processes. The filter is based on minimization of the mean square value of325
the difference between the actual filter output and some desired output, as shown in fig. ?? The requirement326
is to make the estimation error as small as possible in some Statistical sense by controlling impulse response327
coefficients w 0 , w 1 , ??., w N-1 . Two basic restrictions are: 1. The filter is linear, which makes mathematical328
analysis easy to handle.2. The filter is an FIR (symmetrical and odd ordered) filter.329

The filter output is y(n) and the estimation error is given by e(n). The performance of the filter is determined330
by the size of the estimation error, that is, a smaller estimation error indicates a better filter performance. As331
the estimation error approaches zero, the filter output y(n) approaches the desired signal d(n). Clearly, the332
estimation error is required to be as small as possible. In simple words, in the design of the filter parameters,333
an appropriate function of this estimation error as performance or cost function is chosen and the set of filter334
parameters is selected, which optimizes the cost function. In Wiener filters, the cost function is chosen to bex =335
E[e(n) 2 ] (6.1)336
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Where E[.] denotes the expectation or ensemble average since both d(n) and x(n) are random processes.337
d) Wiener Filter: Transversal, Real valued case Consider an adaptive transversal filter as shown in Fig 3 ??2.338
Assume that the filter input x(n) and the desired response d(n) are real valued stationary processes. The filter339
tap weights w 0 , w 1 ,????w N-1 are also assumed to be real valued , where N equals the number of delay units340
or tap weights.341

The filter input x(n) and tap weight vectors, w, can be defined as column vectors,x(n) = [ x(n) x(n-1)??342
x(n-N+1)] w = [w 0 w1 ??? w N-1 ] T (6.2)343

The filter output is defined as??(??) = ? = ?? ??=0 w i x(n-i) =w T x(n) = x T (n)w(n)344
Subsequently, the error signal can be written ase(n) = d(n)-y(n) = d(n) -w T x(n) = d(n) -x T (n)w (6.4)345
Substituting (3.5) into (3.1) , the cost function is obtained as,E[(e(n) 2 ] = E[(d(n)-w T x(n)) (d(n)-x T (n)w)]346

((6.6)347
Expanding the last expression of (6.6) we obtain,348

16 E[ d(n) 2 ] -E[ d(n)x T (n)w] -E[d(n) w T x(n)]+ E[w T x(n)349

x T (n)w]350

(6.7)351
Since w is not a random variable,E[d(n) 2 ] -E[ d(n)x T (n)]w -w T E[d(n) x(n)]+w T E[ x(n) x T (n)]w (6.8)352

z -1 z -1 z -1353
Tap Weight Control Mechanism wn + w1 w0 + + x(n) x(n-1) x(n-N+1) d(n) y(n)p=E[d(n)x(n)]=[p 0 , p 1 ,354

?????p N-1 ] T (6.9) And E[x(n) x T (n)] as a N x N autocorrelation matrix R R=E[x(n)x T (n)]= ? ?? 00 ??355
01 ?? 02 ? ?? 0,???1 ? ? ? ?? ???1,0 ?? ???1,1 ? ?? ???1,???1 ? (6.10)356

From (6.9),p T ?= E[d(n) x T (n)] and hence p T w = w T p This implies that E[d(n) x T ?(n)] w = E[d(n)357
x(n)]w T ?.358

Subsequently, we get (6.11) This is a quadratic function of tap weight vector ’w’ with a single global minimum.359
To obtain the set of filter tap weights that minimizes the cost function, ? , solve the system of equations that360
results from setting the partial derivatives of ? ? ?with res pect to every ta p weight of the filter i.e. the gradient361
vector to zero. That is ???? ???? ?? = 0 (6.12) For i = 0, 1, ???..N-1 where N = number of tap weights The362
gradient vector in (3.12) can also be expressed as? ? = 0 (6.13) Where Ñ is the gradient operator defined as363
column vector??= E [d(n) 2 ] -E[ d(n)x T (n)]w -w T ?E[d(n) x(n)] + w T ?E[ x(n) x T ?(n)] w , =E[d(n) 2 ]-2p364
T w + w T ?R w?? = ? ???? ???? 1 ???? ???? 2 ???? ???? ?? ?1 ? (6.14)365

and 0 on the right hand side of (3.13) denotes the column vector consisting of N zero. It has been further366
proved that the partial derivatives of x with respect to the filter tap weights can be solved such that ?? = 2Rw367
-2p ??6.15) By letting ? ? = 0, the following equation is obtained, in which the optimum set of Wiener filter tap368
weights can be obtained, Rw = p This implies that w = R -1 p = w 0 (6.16)369

Where w 0 indicates the optimum tap weight vector. This equation is known as the Wiener Hopf equation370
and can be solved to obtain the tap weight vector, which corresponds to the minimum point of the cost function.371

17 e) Iterative Search Algorithm372

It has been shown in the previous section that the Wiener Hopf equation can be solved to obtain the optimum373
filter tap weights by minimizing a cost function, if the required statistics of the underlying signals ’R’ and ’p’374
are available. Although this method is straightforward, it presents serious computational difficulties, especially375
when the filter contains a large number of tap weights and the input data rate is high. An alternative is to use376
an iterative search algorithm that starts at some arbitrary initial point in the tap weight vector space and moves377
progressively towards the optimum filter tap weight vector in steps. Each step is chosen with the aim of reducing378
the cost function. The principle of finding the optimum filter tap weight vector by progressive minimization379
of the underlying cost function by means of an iterative algorithm is central to the development of adaptive380
algorithms (e.g. LMS). In simplified terms, adaptive algorithms are actually iterative search algorithms derived381
for minimizing the cost function by replacing the true statistics with estimates obtained. Assume that the cost382
function to be minimized is convex (If the cost function corresponds to a convex quadratic surface, it has a unique383
minimum point. In other words, when the cost function is convex, the iterative search algorithm is guaranteed384
to converge to the optimum solution), we may start with an arbitrary point on the performance surface and take385
a small step in the direction in which the cost function decreases fastest. This corresponds to a step along the386
steepest descent slope of the performance at that point. Repeating this successively, convergence towards the387
bottom of the performance surface (corresponding to the set of parameters that minimize the cost function) is388
guaranteed.389

The method of steepest descent is an alternate iterative search method to find w 0 (in contrast to solving390
the Wiener Hopf equation directly). The method of steepest descent algorithm belongs to a family of iterative391
methods of optimization. It is a general scheme that performs an iterative search for a minimum point of any392
convex function of a set of parameters. Here, this method is implemented in transversal filter with the convex393
function referring to the cost function and the set of parameters referring to the filter tap weights. It uses the394
following procedures to search the minimum point of the cost function of a set of filter tap weights. a) Begin with395
an initial guess of the filter tap weights whose optimum values are to be found for minimizing the cost function.396
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19 H) PERFORMANCE OF AN ADAPTIVE ALGORITHM

Unless some prior knowledge is available, the search can be initiated by setting all the filter tap weights to zero,397
i.e. w(0). b) Use this initial guess to compute the gradient vector of the cost function with respect to the tap398
weights at the present point. c) Update the tap weights by taking step in the opposite direction (sign change)399
of the gradient vector obtained in step 2. This corresponds to step in the direction of the steepest descent in400
the cost function at the present input. Furthermore, the size of the step is chosen proportional to the size of the401
gradient vector. d) Go back to Step 2, and iterate the process until no further significant change is observed in402
the tap weights i.e. the search has converged to an optimal point. According to the above procedures, if w(n) is403
the tap weight vector at the nth iteration, then the following recursive equation may be used to update w(n).404

??(?? + 1) = ??(??) ? µ? ?? ?? (6.17)405
Where µ is the positive scalar called step size, and ? n ? denotes the gradient vector evaluated at the point406

w = w(n).407

18 g) Error Performance Surface408

The estimation error e(n) can be given as:??(??) = ??(??) ? ? ?? ?? ??(?? ? ??) ???1 ??=0 (6.18)409
The cost function can be written as?? = ??[??(??) 2 ] ? ? ?? ?? * ??[??(?? ? ??)?? * (??)] ???1 ??=0 (6.19)410
The cost function or the mean squared error is precisely a second order function of the tap weights in the filter.411

Since ’w’ can assume a continuum of values in the N dimensional w-plane, the dependence of the cost function412
depends on the tap weights w 0 , w 1 , ??...w N-1 may be visualized as a bowl shaped (N+1)-dimensional surface413
with N degrees of freedom represented by the tap weights of the filter. The surface so described is called the414
error performance surface of the transversal filter. The surface is characterized by a unique minimum, where the415
cost function attains its minimum value. At this point, the gradient vector ? ? is identically zero. The height416
corresponds to the physical description of filtering the signal x(n-i) with the fixed filter weight w, from which a417
prediction error signal e(n) with power of is generated. Some filter setting w 0 =(w o0 , wo1 ) will produce the418
minimum MSE (w o is the optimum filter tap weight vector). This theory is the base of basic adaptive algorithms419
of adaptive signal processing. The gradient based adaptation starts with an old optimization technique known420
as the method of steepest descent. It is recursive in the sense that starting from some initial arbitrary value for421
tap weight vector, it improves with increasing number of iterations. The final value so computed for tap weight422
vector converges to Wiener solution.423

The LMS algorithm has been extensively analyzed in literature and a large number of results on its steady424
state misadjustment and tracking performance have been obtained. The fixed step size least mean square (FSS425
LMS) algorithm is an important member of the family of stochastic gradient algorithms. The term ’stochastic426
gradient’ is intended to distinguish it from the method of steepest descent that uses deterministic gradient in a427
recursive computation of the Wiener filter for stochastic inputs. This algorithm does not require measurements428
of the pertinent correlation functions, nor does it require matrix inversion. Subsequent works have discussed429
issue of optimization of step size or methods of varying step size to improve performance. Year 2014430

19 h) Performance of an Adaptive Algorithm431

The factors that determine the performance of an algorithm are clearly stated below. Essentially, the most432
important factors as described here 1. Ra te of Convergence: This is defined as the number of iterations required433
for the algorithm to converge to its steady state mean square error. The steady state MSE is also known434
Misadjustment: This quantity describes steady-state behavior of the algorithm. This is a quantitative measure435
of the amount by which the ensemble averaged final value of the mean-squared error exceeds the minimum mean-436
squared error produced by the optimal Wiener filter. The smaller the misadjustment, the better the asymptotic437
performance of the algorithm. 3. Numerical Robustness: The implementation of adaptive filtering algorithms438
on a digital computer, which inevitably operates using finite word-lengths, results in quantization errors. These439
errors sometimes can cause numerical instability of the adaptation algorithm. An adaptive filtering algorithm440
is said to be numerically robust when its digital implementation using finite-wordlength operations is stable. 4.441
Computational Requirements: This is an important parameter from a practical point of view. The parameters442
of interest include the number of operations required for one complete iteration of the algorithm and the amount443
of memory needed to store the required data and also the program. These quantities influence the price of the444
computer needed to implement the adaptive filter.445

5. Stability: An algorithm is said to be stable if the mean-squared error converges to a final (finite) value.446
Ideally, one would like to have a computationally simple and numerically robust adaptive filter with high rate447
of convergence and small misadjustment that can be implemented easily on a computer. In the applications of448
digital signal processing e.g. adaptive echo cancellation, the above factors play an important role.449

There are different types of adaptive filtering algorithms, they are ? Recursive least squares (RLS) algorithm.450
i) The structure of Adaptive filter451
The block diagram for the adaptive filter method utilized in this section. Here w represents the coefficients of452

the FIR filter tap weight vector, x(n) is the input vector samples, z -1 is a delay of one sample periods, y(n) is453
the adaptive filter output, d(n) is the desired echoed signal and e(n) is the estimation error at time n. The aim454
of an adaptive filter is to calculate the difference between the desired signal and the adaptive filter output, e(n).455
This error signal is fed back into the adaptive filter and its coefficients are changed algorithmically in order to456
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minimize a function of this difference, known as the cost function. In the case of acoustic echo cancellation, the457
optimal output of the adaptive filter is equal in value to the unwanted echoed signal.z -1 z -1 z -1 x x x + + x(n)458
x(n-1) x(n-N+1) w0 w1 wN-1 y(n) d(n) e(n) - Figure 6.2 : Adaptive filter block diagram459

When the adaptive filter output is equal to desired signal the error signal goes to zero. In this situation the460
echoed signal would be completely cancelled and the far user would not hear any of their original speech returned461
to them.462

20 VII.463

21 Least ean Square (LMS) Algorithm464

The LMS algorithm is a type of adaptive filter known as stochastic gradient-based algorithms as it utilizes the465
gradient vector of the filter tap weights to converge on the optimal wiener solution. It is well known and widely466
used due to its computational simplicity. With each iteration of the LMS algorithm, the filter tap weights of the467
adaptive filter are updated according to the following formulaw(n +1) = w(n) + 2?e(n)x(n) (7.1)468

Here x(n) is the input vector of time delayed input valuesx(n) = [x(n) x(n-1) x(n-2) ?.. x(n-N+1)] T (7.2)469
The vector w(n) represents the coefficients of the adaptive FIR filter tap weight vector at time n.w(n) = [w 0470

(n) w 1 (n) w 2 (n) ?.. w N-1 (n)] T (7.3)471
The parameter ? is known as the step size parameter and is a small positive constant. This step size parameter472

controls the influence of the updating factor. Selection of a suitable value for ? is imperative to the performance473
of the LMS algorithm, if the value is too small the time the adaptive filter takes to converge on the optimal474
solution will be too long; if ? is too large the adaptive filter becomes unstable and its output diverges.475

22 a) Derivation of the LMS algorithm476

The derivation of the LMS algorithm builds upon the theory of the wiener solution for the optimal filter tap477
New Delay ess Sub Band Adaptive Filtering Algorithm for Active Noise Control Systems L M weights, w o ,478
as outlined in section 3.2.2. It also depends on the steepest descent algorithm as stated in equation 3.23, this479
is a formula which updates the filter coefficients using the current tap weight vector and the current gradient480
of the cost function with respect to the filter tap weight coefficient vector, ?(n)w(n+1)=w(n)-µ ?(n) Where ?481
(n)=E[e(n) 2 ] (7.4)482

As the negative gradient vector points in the direction of steepest descent for the N-dimensional quadratic483
cost function, each recursion shifts the value of the filter coefficients closer toward their optimum value, which484
corresponds to the minimum achievable value of the cost function, ?(n).485

The LMS algorithm is a random process implementation of the steepest descent algorithm, from equation 3.23.486
Here the expectation for the error signal is not known so the instantaneous value is used as an estimate. The487
steepest descent algorithm then becomes equation 3.24.w(n+1)=w(n)-µ ?(n) Where ? (n) = e(n) 2 (7.5)488

The gradient of the cost function, ??(n), can alternatively be expressed in the following form.?(n)=(e 2 (n))489
= ???? 2 (??) ???? = 2e(n) ???? (??) ???? = 2e(n) ??(??(??)???(??)) ???? = 2e(n) ???? ?? (??)?? (??) ???? =490
2e(n)x(n) (7.6)491

Substituting this into the steepest descent algorithm of equation 3.8, we arrive at the recursion for the LMS492
adaptive algorithm.w(n +1) = w(n) + 2?e(n)x(n) (7.7)493

b) Implementation of the LMS algorithm Each iteration of the LMS algorithm requires 3 distinct steps in this494
order: i. The output of the FIR filter, y(n) is calculated using equation 3.27y(n)=? ??(??)??(?? ? ??)= ?? ??495
(??)??(??) ???1 ??=0(7.8)496

ii. The value of the error estimation is calculated using equation 3.28.e(n)=d(n)-y(n) (7.9)497
iii. The tap weights of the FIR vector are updated in preparation for the next iteration, by equation 7.9w(n498

+1) = w(n) + 2?e(n)x(n) (7.10)499
The main reason for the LMS algorithms popularity in adaptive filtering is its computational simplicity, making500

it easier to implement than all other commonly used adaptive algorithms. For each iteration the LMS algorithm501
requires 2N additions and 2N+1 multiplications (N for calculating the output, y(n), one for 2?e(n) and an502
additional N for the scalar by vector multiplication). One of the primary disadvantages of the LMS algorithm503
is having a fixed step size parameter for every iteration. This requires an understanding of the statistics of the504
input signal prior to commencing the adaptive filtering operation. In practice this is rarely achievable. Even if505
we assume the only signal to be input to the adaptive echo cancellation system is speech, there are still many506
factors such as signal input power and amplitude which will affect its performance. The normalized least mean507
square algorithm (NLMS) is an extension of the LMS algorithm which bypasses this issue by selecting a different508
step size value, ?(n), for each iteration of the algorithm. This step size is proportional to the inverse of the total509
expected energy of the instantaneous values of the coefficients of the input vector x(n). This sum of the expected510
energies of the input samples is also equivalent to the dot product of the input vector with itself, and the trace511
of input vectors auto-correlation matrix, R. The recursion formula for the NLMS algorithm is stated in equation512
3.31.w(n+1)=w(n)+ 1 ?? ?? (??)??(??)513

??(??)??(??) (7.12)514
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26 ENCODING AUDIO SIGNALS

23 c) Derivation of the NLMS algorithm515

To derive the NLMS algorithm we consider the standard LMS recursion, for which we select a variable step size516
parameter, ?(n). This parameter is selected so that the error value, e + (n), will be minimized using the updated517
filter tap weights, w(n+1), and the current input vector, x(n).w(n+1) = w(n) + 2µ(n)e(n)x(n) , e + (n) = d(n)518
-w T (n+1)x(n), =(1-2µ(n)x T (n)x(n))e(n) (7.13) Year 2014519

Next we minimize (e + (n)) 2 , with respect to ?(n). Using this we can then find a value for ?(n) which forces520
e + (n) to zero.µ(n)= 1 2?? ?? (??)??(??) ??7.14) This ?(n) is then substituted into the standard LMS recursion521
replacing ?, resulting in the following NLMS equation.w(n+1) = w(n) + 2µ(n)e(n)x(n) w(n+1)=w(n)+ 1 ?? ??522
(??)??(??)523

??(??)??(??) ??7.15) d) Implementation of the NLMS algorithm524
The NLMS algorithm has been implemented in Matlab and in a real time application using the Texas525

Instruments TMS320C6711 Development Kit. As the step size parameter is chosen based on the current526
input values, the NLMS algorithm shows far greater stability with unknown signals. This combined with good527
convergence speed and relative computational simplicity makes the NLMS algorithm ideal for the real time528
adaptive echo cancellation system.529

As the NLMS is an extension of the standard LMS algorithm, the NLMS algorithms practical implementation530
is very similar to that of the LMS algorithm. Each iteration of the NLMS algorithm requires these steps in the531
following order.532

The output of the adaptive filter is calculated.y(n)=? ??(??)??(?? ? ??) = ???1 ??=0 ?? ?? (??)??(??) (3.35)533
An error signal is calculated as the difference between the desired signal and the filter output e(n)=d(n)-y(n)534

??7.16) The step size value for the input vector is calculated.µ(n) = 1 2?? ?? (??)??(??) (7.17)535
The filter tap weights are updated in preparation for the next iteration.w(n +1) = w(n) +?(n)e(n)x(n) (7.18)536
Each iteration of the NLMS algorithm requires 3N+1 multiplications, this is only N more than the standard537

LMS algorithm, this is an acceptable increase considering the gains in stability and echo attenuation achieved.538

24 VIII.539

25 Comparison of Adaptive Filtering Algorithms540

Algorithm: LMS Algorithm Average attenuation: -18.2 dB Multiplication operations: 2N+1 Comments: Is the541
simplest to implement and is stable when the step size parameter is selected appropriately.542

This requires prior knowledge of the input signal which is not feasible for the echo cancellation system.543
Algorithm: NLMS Algorithm Average attenuation: -27. The real time acoustic echo cancellation system was544

successfully developed with the NLMS algorithm. The system is capable of cancelling echo with time delays of545
up to 75 ms, corresponding to reverberation off an object a maximum of 12 meters away. This proves quite546
satisfactory in emulating a medium to large size room.547

The utility of SBC is perhaps best illustrated with a specific example. When used for audio compression, SBC548
exploits what might be considered a deficiency of the human auditory system. Human ears are normally sensitive549
to a wide range of frequencies, but when a sufficiently loud signal is present at one frequency, the ear will not550
hear weaker signals at nearby frequencies. We say that the louder signal masks the softer ones. The louder signal551
is called the masker, and the point at which masking occurs is known, appropriately enough, as the masking552
threshold. The basic idea of SBC is to enable a data reduction by discarding information about frequencies which553
are masked. The result differs from the original signal, but if the discarded information is chosen carefully, the554
difference will not be noticeable, or more importantly, objectionable.555

26 Encoding Audio Signals556

The simplest way to digitally encode audio signals is pulse-code modulation (PCM), which is used on audio CDs,557
DAT recordings, and so on. Digitization transforms continuous signals into discrete ones by sampling a signal’s558
amplitude at uniform intervals and rounding to the nearest value representable with the available number of bits.559
This process is fundamentally inexact, and involves two errors: discretization error, from sampling at intervals,560
and quantization error, from rounding.561

The more bits used represent each sample, the finer the granularity in the digital representation, and thus the562
smaller the error. Such quantization errors may be thought of as a type of noise, because they are effectively the563
difference between the original source and its binary representation. With PCM, the only way to mitigate the564
audible effects of these errors is to use enough bits to ensure that the noise is low enough to be masked either by565
the signal itself or by other sources of noise. A high quality signal is possible, but at the cost of a high bitrate566
(e.g., over 700 kbit/s for one channel of CD audio). In effect, many bits are wasted in encoding masked portions567
of the signal because PCM makes no assumptions about how the human ear hears. More clever ways of digitizing568
an audio signal can reduce that waste by exploiting known characteristics of the auditory system. A classic569
method is nonlinear PCM, such as mu-law encoding (named after a perceptual curve in auditory perception570
research). Small signals are digitized with finer granularity than are large ones; the effect is to add noise that571
is proportional to the signal strength. Sun’s Au file format for sound is a popular example of mu-law encoding.572
Using 8-bit mu-law encoding would cut the per-channel bit rate of CD audio down to about 350 kbit/s, or573
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about half the standard rate. Because this simple method only minimally exploits masking effects, it produces574
results that are often audibly poorer than the original. Sub-band coding is used for example in G.722 codec. It575
uses sub-band adaptive differential pulse code modulation (SB-ADPCM) within a bit rate of 64 kbit/s. In the576
SB-ADPCM technique used, the frequency band is split into two sub-bands (higher and lower) and the signals577
in each sub-band are encoded using ADPCM.578

As explained in Section 2, in the proposed algorithm the TAF is obtained with a delay relative to the input579
signal. The amount of delay depends on the method of filter reconstruction. For sequential synthesis the delay580
is (La ? ? Ls) / 2 samples while for batch synthesis it is La / 2 samples. All of the delayless SAF methods581
reviewed in Section 1 have to deal with a plant reconstruction delay. The delay leads to a ”synchronization582
problem” between the input signals and the plant, causing problems in tracking a dynamic plant. The extent of583
the problem depends on the plant time-dynamics and the TAF reconstruction delay. To demonstrate the effects584
of the delay, we simulated the system with the same system set up and input signals as described in the previous585
section with the following changes. The echo plant was switched to a new plant after 30 seconds through the586
experiment. With the employed analysis/synthesis filters used in the experiments, tracking problems were barely587
observable due to the low reconstruction delay of the system. Thus, the analysis and synthesis window lengths588
were increased to La ? 1024 and Ls ? 256 samples to better observe the effects of the delay. To simplify the589
analysis, batch synthesis was used for TAF WOLA reconstruction. This leads to a filter reconstruction delay of La590
/ 2 ? 512 samples. Delaying the input signals by the same amount so that they are synchronized with the plant591
could compensate for the filter reconstruction delay. Of course this is counter productive as it creates delays in592
an otherwise delayless system. The ERLE drops at 30 seconds, and stays low for around 64 msecs (corresponding593
to 512 samples of delay) before it starts to rise again. This low-time of ERLE causes a drop in echo cancellation594
performance and creates artifacts in the output. Repeating the experiment with delay compensation, the ERLE595
drops later and start to rise right away as shown in the figure. The echo plant swap is unlikely to happen in596
practice; rather gradual plant variations might occur.597

27 X.598

28 Simulation Results599

The input file ’file1. The total complexity is plotted in Fig. ??.8, number of real multiplications versus the number600
of subbands M. The plot is for the PFFT-2 method with L SAF = 4N/M, as it results in better performance than601
that of PFFT-1. For comparison purposes, included the computational complexity of the MT and DFT-MDF602
algorithms. As shown, the computational complexities of all methods reduce almost exponentially with M. The603
proposed technique compared to the other methods for small values of M has higher computational complexity.604
The new technique works very well with a larger number subbands, improving the system performance and605
attaining lower complexity, whereas the MT method fails to converge and the performance of the DFT-MDF606
method deteriorates.607

29 Conclusion608

Experimental results showed that the proposed method outperformed the two commonly used SAF and BAF609
methods. The proposed technique compared to the other methods for small values of M has higher computational610
complexity. The new technique works very well with a larger number of subbands, improving the system611
performance and attaining lower complexity, whereas the MT method fails to converge and the performance612
of the DFT-MDF method deteriorates.613

30 XII.614

31 Future Scope615

Adaptive digital signal processing is a rapidly growing branch of DSP and has great significance in the design616
of adaptive systems. The various signal processing applications demand for reduction in trade off between617
misadjustment and convergence rate, New Delay ess Sub Band Adaptive Filtering Algorithm for Active Noise618
Control Systems L Acoustic paths such as those encountered in ANC application usually have long impulse619
responses, which require longer adaptive filters for noise cancellation. Subband adaptive filters working with a620
large number of subbands have been shown to be a good solution to this problem. The focus of this project was621
to design such a high-performance SAF algorithm. The performance limiting factors of existing SAF structures622
were found to be due to the inherent delay and side-lobes of the prototype filter in the analysis filter banks.623
Hence, the analysis filter banks were modified to reduce the inherent delay. A new weight stacking transform was624
designed to alleviate the interference introduced by the side-lobes. The modifications resulted in a new subband625
method that, unlike existing methods, improves the performance and reduces the computational complexity for626
a large number of subbands.627

taking realization of algorithm into account.628
The modifications resulted in a new subband method that, unlike existing methods, improves the performance629

and reduces the computational complexity for a large number of subbands. There is a scope of improvement in630

11



31 FUTURE SCOPE

replacing the existing time domain adaptive filters with frequency domain adaptive filters. There’s a lot, which631
can be done in future for improvement on the methods for noise cancellation. The field of digital signal processing632
and in particular adaptive filtering is vast and further research and development in this area can result in some633
improvement on the methods studied in this paper.634
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